

Document owner Document number Version Status: Date

MHHS DAG MHHS-E2E001 Version 3.6.1 Design Updates 4th April 2024

Document owner Document number Date

MHHS TOM – End-to-End Solution

Architecture

© Elexon 2024 Page 1 of 76

1 Contents

1 Contents 1
1.1 Change Record 3

1.2 Reviewers 3

1.3 References 3

1.4 Terminology 5

2 Introduction 6

2.1 Background 6

2.2 Objective 6

2.3 Assumptions 6

2.4 Risks 6

2.5 Document Scope 6

3 MHHS TOM - Functional Architecture 8

3.1 Key Assumptions/Principles 8

3.2 MHHS TOM - Scope 8

3.3 MHHS TOM - Actors/Services 8

3.4 MHHS TOM - Workflows 12

3.5 MHHS Message/Event Channel Instances 25

3.6 Actor Workflows Summary 26

4 Messaging Architecture 28

4.1 Logical View 28

4.2 Message/Event Channel 29

4.3 DIP Processing 35

4.4 Send Messages API 36

4.5 Message Compression Handling 45

4.6 Receive Messages Webhook 46

4.7 Send Status Messages API 53

4.8 Receive Status Messages Webhook 53

4.9 Replay Events 55

5 Message Choreography 56

5.1 Simple Message Exchange 56

5.2 Error Handling & Message Distribution Patterns 67

5.3 Batch Message Handling 68

5.4 Workflow Message Handling 68

6 Message Volume and Submission Patterns 72

6.1 Half-Hourly Consumption Data (IF-021) 72

7 Message Auditing 72

© Elexon 2024 Page 2 of 76

8 Technical Architecture 73

8.1 Open API Design (Swagger) 73

8.2 Privacy & Security 73

8.3 Performance 73

8.4 Connection Patterns 73

8.5 Version Control 75

© Elexon 2024 Page 3 of 76

1.1 Change Record

1.2 Reviewers

1.3 References

Date Author Version Change Detail

26 May 2022 RG 0.1 First draft

1 August 2022 RG 0.2 Updated after first review

23 September 2022 RG 1.3 Updates after latest round of industry reviews and design
clarification. Key updates:

• Remove Sender Envelope Reference

• Format of Sender Unique Reference is mandated

31 October 2022 RG 2.0 DAG Approval

10 November 2022 RG 2.1 Minor updates

19 December RDG 2.2 Minor updates

? 2.3

3 February 2023 RDG 2.4 Minor updates to align with other changes in the interfaces

 3 DAG Sign-off

20 March 2023 RDG 3.1 Minor updates for mandatory null issue & API end points and
other clarifications coming through from detailed design

30 May 2023 RDG, RT 3.1.1 Minor corrections following review

08 Jun 2023 RDG, RT,
SW

3.2 DIN-250, DIN-270, DIN-282, DIN-284, DIN-289 DIN-374,
DIN-375

27th June 2023 RDG, RT,
SW

3.3 DIN 470

27th July 2023 RDG, RT,
SW

3.4 DIN-503, 552, DIN-487, 485

26th Sept 2023 SC, RDG,
SW

3.5 DIN-590, 603, 670, 484, 490, 544, 592, 683

27th Nov 2023 SW 3.5.1 DIN-798

15th Jan 2024 SW 3.5.2 DIN-860

30th Jan 2024 SW, RG 3.6 DIN-799, 807, 836, 844 (Inclusion of MDR role, support for
IR7), 861, 867 & 871.

4th April 2024 RG 3.6.1 DIN-900

Reviewer Role

TDWG Review (first draft)

MHHS Program Parties Review (second draft)

DAG For information and sign off

Document/Link Publisher Published Additional Information

MHHS Programme Governance

Framework - (Strawman)

MHHS v1.0

The Target Operating Model for

Market-wide Half Hourly

Settlement -

Design Working Group’s

Recommendation to Ofgem

Elexon V1.1

12 February 2019

MHHS AWG Recommendation Elexon v1.0

22 April 2021

MHHS Risk and Management

Process

MHHS v0.1 August 2021 – in preparation

MHHS Architecture Principles MHHS V1.0 June 2022

© Elexon 2024 Page 4 of 76

MHHS End-to-End Security

Architecture

MHHS V1.0

MHHS-DIP001-DIP Functional
Specification

MHHS V2.2 August 2022

MHHS-DIP002-Non-Functional
Requirements

MHHS V2.1 April 2022

MHHSP-DES138-Interface
Catalogue

MHHS V5.7.2 Physical Interface Specifications

MHHS-E2E002-Requirements MHHS V3.2 End-to-End Requirements

© Elexon 2024 Page 5 of 76

1.4 Terminology

Term Description

ARP Advanced Retrieval and Processing Service

AWG Architectural Working Group

BSCCo Balancing and Settlement Code Company (Elexon Limited)

COS Change of Supplier

DEV Development

DIP Data Integration Platform

DIPSP DIP Service Provider

DCC Data Communications Company

DNO Distribution Network Operator

DPIA Data Protection Impact Assessment

DTN Data Transfer Network

DTS Data Transfer Service

DWG Design Working Group

ECOES Electricity Central Online Enquiry Service

ESO Enduring Service Owner, i.e. the party with overall responsibility for the DIP

EDA Event-Driven Architecture

HHR Half Hour

HHS Half-Hourly Settlement

HTTP Hypertext Transfer Protocol

iDNO Independent Distribution Network Operator

ISD Industry Standing Data

JSON JavaScript Object Notation

LDSO Licensed Distribution System Operator

LSS Load Shaping Service

MDR Meter Data Retrieval Service

MDS Market-wide Data Service

MHHS Market-Wide Half-Hourly Settlement

MPAN Metering Point Administration Number

MRS Meter Reading Service

MSA Metering Service (Advanced)

MSS Metering Service (Smart)

mTLS Mutual Transport Layer Security

Obo On Behalf Of

PRE-PROD Pre Production

PROD Production

PSS Processing Service (Smart)

RECCo Retail Energy Code Company (Retail Energy Code Limited)

RFP Request for Proposal

SD Settlement Day

SDS Smart Data Services

SIT System Integration Test

REGS Registration Service

SP Settlement Period

SUP Supplier

SUR Sender Unique Reference

SVA Supplier Volume Allocation

SWIKI Switching Public Key infrastructure

TLS Transport Layer Security

TOM Target Operating Model

UIT User Integration Test

UMSDS Unmetered Supplies Data Service

UMSO Unmetered Supplies Operator Service

VAS Volume Allocation Service

© Elexon 2024 Page 6 of 76

2 Introduction

2.1 Background

Since 2018 Ofgem has hoped that Half-Hourly Settlement (HHS) on a market-wide basis would be introduced into the
UK electricity market. A cross-industry Design Working Group (DWG) was established to understand the feasibility of
HHS and how it could be delivered. The DWG produced a Target Operating Model (TOM) that outlines the new ways
of working which could deliver HHS into the market (Reference Target Operating Model for Market-wide Half Hourly
Settlement).

In conjunction with the DWG, and Architectural Working Group (AWG) was established to propose an IT architecture
that could support the business process outlined in the TOM. The AWG recommendation was that an Event-Driven
Architecture (EDA) be implemented (Reference MHHS AWG Recommendation). Hence, a new message
orientated/event-driven middleware component is required – the Data Integration Platform (DIP) - to support the flow of
events/messages between industry participants proposed by the EDA.

On the back of this work the MHHS Programme was established to create a durable, faster, more accurate settlement
process for all market participants, enabling broad change across the electricity industry.

The MHHS programme has refined the original TOM. The final TOM defines a set of services required to deliver
Settlement Period (SP) data from a Meter to a central Settlement body to enable the calculation of the amount of
energy that the electricity Supplier's customers have consumed (or exported) in each Settlement Period for each
Settlement Day (SD). This calculation is then used in the Imbalance Settlement process, which compares the
Supplier's contracted purchases of energy to the amounts deemed to have been consumed (sales) by each of the
Supplier's customers (and recognises any amounts of energy contracted by National Grid under the Balancing
Mechanism). Settlement Data is also provided for network charging.

In addition to these core services, a number of supporting services need to be established to ensure the smooth
running of the electricity market with the move to market-wide half-hour metering.

2.2 Objective

This document describes the end-to-end solution architecture that will support the proposed MHHS TOM and provides
a description of how the different actors within the MHHS landscape interact.

2.3 Assumptions

The end-to-end design has the following assumptions:

1. The choice of the underlying platform to support the DIP message/event processing will not have a

consequential effect on the end-to-end design

2. The DIP is not responsible for orchestrating business process, e.g. ensuring correlated message exchanges

occur.

3. The End-to-End Architecture Security requirements are covered in MHHSP-DIP005-E2E Security

Requirements.

2.4 Risks

The document is prepared with the following prevailing risks:

1. Currently none

2.5 Document Scope

The scope of the document includes

© Elexon 2024 Page 7 of 76

• An overview of the different MHHS Actors and Roles;

• An overview of the MHHS Workflows/business processes:

• A description of the message architecture including:

o Message formats

o Message orchestration

• A view of the requirements to deliver the end-to-end solution:

o Participant responsibilities

o DIP responsibilities

The document provides a narrative for the detailed requirements for the e2e solution architecture that can be found in
the accompanying spreadsheet (Reference MHHSP-DIP009-E2E Requirements, April 2023).

Participants need to use this document as well as the following in order to understand the full impact that the MHHS
TOM will have on their electricity market IT systems:

The document does not cover the following areas:

• Participant on-boarding

• DIP Reporting

© Elexon 2024 Page 8 of 76

3 MHHS TOM - Functional Architecture

3.1 Key Assumptions/Principles

The following are the key design assumptions when establishing the message flows within the MHHS TOM:

1. The DIP will broker new message flows between Market Participants supporting the business process
underpinning the MHHS TOM, i.e. there are no direct point-to-point interfaces between participants.

2. Some of the reworked existing business processes falling under the programme's scope have existing data
flows that use the DTN, and these will be retained where there is no change to that interface. When a MHHS
initiated change to a DTN flow is required then each change is considered on an individual case-by-case basis
as to whether the DTN flow is reworked or re-implemented in the DIP.

3.2 MHHS TOM - Scope

The scope of the MMHS work covers the “Meter to Bank” process for all Supplier Volume Allocation (SVA) Settlement
Meters – i.e., all Settlement Meters connected to distribution networks. The business architecture is described as a set
of services, with each service defined by a set of requirements and processes required to deliver one function of
MHHS.

A service is agnostic of current organisation roles (such as Supplier, Meter Operator, Data Collector, Data Aggregator).

The list of services includes:

• Registration Service - the recording the ownership of supply points and other details information pertinent to
Settlement Metering Systems;

• Metering Service - fitting and maintaining Settlement Meters;

• Data Retrieval - getting information from Settlement Meters;

• Data Processing (Data Services) – validating and estimating Settlement Meter data;

• Smart Metering Data Service Provider, i.e. the DCC

• Load Shaping Service – settlement service use to produce Load Shaping data

• Data Aggregation - summing Settlement Meter data to required granularity; and

• Volume Allocation – allocating Meter volumes to Trading Parties' signatories to the BSC.

• Supplier – energy supplier in the retail market

• Messaging Service – passes messages between other services, i.e. the DIP, DTS.

• Electricity Enquiry Service.

3.3 MHHS TOM - Actors/Services

A few different roles and Users (Market Participants) have been identified. Those actors that are active within the DIP
are marked *:

Role ID DIP
Activ
e

Service Name Market Segment/Role Market
Participant
Role

MSA * Metering Service (Advanced) Advanced Market Segment T

ADS * Advanced Data Service O

© Elexon 2024 Page 9 of 76

Some of these different roles have the capacity to operate within several different contexts for each the TOM business
processes, for example a Supplier within a business process can act as the incumbent supplier, or be a previous or
future supplier. Where the separation of the roles into different contexts is required this is described in the
corresponding business process diagrams and summarised below.

1 CR023 introduced the MDR as an active service within the DIP

MSS * Metering Service (Smart) Smart and Traditional (non-Smart)
Market Segments

S

MRS Metering Reading Service 6

SDS * Smart Data Service N

MDR *1 Meter Data Retrieval Service

UMSO * Unmetered Supplies Operator
Service

Unmetered Supplies Market Segment 3

UMSDS * Unmetered Supplies Data Service Q

MDS * Market-wide Data Service BSC Central Settlement (CS) n/a

LSS * Load Shaping Service n/a

ISD * Industry Standing Data n/a

VAS * Volume Allocation Service n/a

REGS * Registration Service Registration P

SUP * Supplier Supplier X

MAP Meter Asset Provider 8

LDSO * Licensed Distribution System
Operator

(IDNOs & DNOs)

Distribution Network Operator R

EES * Electricity Enquiry Service RECCo L

CSS Central Switching Service Messaging/Orchestration Service

DCC Data Communication Company

DTS Data Transfer Service

DIP Data Integration Platform

DCP * DIP Connection Provider

© Elexon 2024 Page 10 of 76

 Supplier (SUP)

The Supplier are responsible for supplying electricity to the end customer identified by the customer’s MPAN. The

Supplier is responsible for migrating MPANs from the current settlement into the MHHS arrangements.

 Metering Service (MSA & MSS)

The principal functions of a Metering Service (Smart (MSS) and Advanced (MSA)) are to install, commission, test,
maintain, rectify, energise and remove faults in respect of Metering Equipment (including, where applicable, associated
Communications Equipment). The MSS and MSA will also maintain and make available Meter asset information and,
where required, Meter configuration information.

 Data Service (SDS & ADS)

The Data Services are responsible for data retrieval, validation, and submission of consumption data into Settlements.
The Smart Data Service (SDS) will support Smart and Traditional meters, with the Advanced Data Service (ADS)
supporting Advanced Meters. Both Data Services will remotely recover data from their respective meter populations,
making arrangements for manual readings where remote connection is not possible. The Service Request type and
schedule are provided by the Processing Service (PSS) for each Metering Point Administration Number (MPAN) which
is under the responsibility of the PSS.

 Meter Data Retrieval Service (MDR)

The Meter Data Retrieval (MDR) Service is really a sub-component of the Smart Data Service (SDS). However, is
called out here as it is a qualified party in its own right. The MDR will take specific responsibility for all interactions with
the DCC, in terms of DCC Service Request management for access to Smart Meters. All data recovered or exceptions
received will be passed back to the SDS for investigation and resolution. The MDR service has become a user of the
DIP since the implementation of CR023 with the introduction of new message flows between the MDRs and other DIP
services.

 Unmetered Supplies Operator Service (UMSO)

The Unmetered Supplies Operator (UMSO) is responsible for validating the detailed unmetered supplies inventory data
for equipment attached to its distribution network and providing information to other industry stakeholders. It interfaces
with customers who own/operate the unmetered equipment (referred to as the Unmetered Supplies customer).

 Unmetered Supplies Data Service (UMSDS)

The Unmetered Supplies Data Service (UMSDS) is responsible for calculating Settlement Period (SP) level
consumption data for unmetered equipment, for example, streetlights and traffic signals.

 Central Settlement (CS)

Central Settlement is the parent role undertaken by BSCCo (Elexon). It encompasses the child roles of MDS, LSS, ISD

and VAS.

© Elexon 2024 Page 11 of 76

 Market-wide Data Service (MDS)

The Market-wide Data Service (MDS) is responsible for processing Settlement Period level data from the Smart Data
Service (SDS) for smart and non-smart Meters; and Advanced Data Service (ADS) for Advanced Meters; and
Unmetered Supplies Data Services (UMSDS) for unmetered equipment. The MDS will provide data aggregations for
Imbalance Settlement and other purposes (such as network charges and flexibility offerings (if required).

 Load Shaping Service (LSS)

The Load Shaping Service (LSS) is responsible for calculating energy consumption (import and export) Load Shapes
for a number of defined categories of Metering Systems. The LSS uses validated actual Settlement Period (SP) level
data accessed from the Data Services. The Data Services will then use the Load Shape data to convert Register
Readings (RRs) or daily consumption values into SP level data. The Load Shape data will also be used to estimate
invalid SP level data for Meters and default where data is missing or unavailable.

 Volume Allocation Service (VAS)

The Volume Allocation Service (VAS) is responsible for accessing aggregated Settlement Period (SP) level data from
the Market-wide Data Service (MDS); and SP level data (Grid Supply Point Group Takes) from the Central Data
Collection Agent (CDCA). The VAS calculates SP level energy volumes for Balancing Mechanism Units (BMUs) using
these two datasets. The data is processed for each Settlement Day in a scheduled run called a Volume Allocation Run
(VAR). The processed BMU data is used in the Imbalance Settlement calculations. The VAS will also allocate or
aggregate data for other purposes and provide a wide range of data reporting.

 Industry Standing Data (ISD)

Industry Standing Data process is responsible for publishing Industry Standing Data. The process is owned and

managed by the BSCCo. ISD can be downloaded from the Elexon portal on an ad-hoc basis, and updates will be

notified by the DIP to Market Participants to an agreed timetable (monthly). It will replace the current D269 and D270

data flows.

 Data Integration Platform (DIP)

The Data Integration Platform (DIP) is responsible for brokering messages between the different MHHS actors and

services. The DIP performs the addressing and routing of messages between participants.

 Registration Service (REGS)

The Registration Service is the LDSO service that holds Meter point standing data information about each MPAN within

its distribution Region. Data includes the BRP the processing and metering services appointed to the MPAN. It also

includes information on the type of customer, the Measurement Class, Energisation Status and Line Loss Factor Class.

In the MHHS TOM the Registration Service will act as the definitive source of all settlement impacting data items. The

Registration Service, leveraging is existing connectivity with the CSS (Central Switching Service) shall also provide the

MHHS view of Supply Point ownership.

 Data Transfer Service (DTS)

The DTS is the existing mechanism that is used to exchange information between participants in the UK utility markets.
The DTS provides a managed file transfer service that allows market participants to share data efficiently and securely

© Elexon 2024 Page 12 of 76

to perform their roles in the market. The DTS service operates over the Data Transfer Network (DTN). Often the two
terms are used synonymously.

Many of the workflows described below will use the data exchanges that the DTN orchestrates, and the DTN is
considered similarly to the DIP.

 Central Switching Service (CSS)

The CSS provides the capability for domestic consumers to changes energy suppliers. Consumers are able to transfer
data, payment details and account information within five working days, and will later be able to switch within 24 hours.

 Electricity Enquiry Service (EES)

The Electricity Enquiry Service (EES) allows users to access market data where they are entitled to do so. Data is
sourced from either the Supplier Meter Registration Service, or the Central Switching Service (CSS) and moving
forward the DIP. The service consists of an on-line portal where the data for all electricity Registrable Measurement
Points (RMPs) is available and API service which allows Enquiry Service User to gather information from the service in
a specified manner.

 DIP Connection Provider (DCP)

A DIP Connection Provider is a third-party who provides connectivity services to the DIP on behalf of DIP Participants.
Some DIP Participants will not want to have a direct connection to the DIP and instead want to have this service
undertaken by a DIP Connection Provider.

3.4 MHHS TOM - Workflows

The following section describes at a high level the initial list of workflows that the programme is aiming to deliver.

© Elexon 2024 Page 13 of 76

Central Settlement publications

LDSO

Central Settlement (CS) [Elexon]

Registration
Service
(REGS)

Supplier
(SUP)

LDSO Ops
(LDSO)

Advanced Data
Service (ADS)DCC

Data Integration Platform (DIP)

MPAN Registration

ISD

Meter Technical Details

Consumption

Smart Data
Service (SDS) Unmetered Supplies

Data Service
(UMSDS)

Market Wide Data

Service (MDS)

Industry Standing

Data (ISD)

Load Shaping

Service (LSS)

Volume Allocation

Service (VAS)

Load Shapes

Advanced Metering
Service (MSA)

 Metering Service
Smart (MSS)

Meter Data
Retrieval
Service

(MDR) PSS

 Unmetered Supplies
Operator (UMSO)

Settlement Reporting
(tbd)

Meter request

Non-Addressable

Service
Addressable Service

Electricity
Enquiry Service

(EES)

SDS/MDR
Interactions

Figure 1 MHHS TOM Workflows

MHHS TOM landscape will be a distributed network of services and roles requiring constant data communication for
operational purposes. There are approximately 27 Registration Services that will need to maintain operational data
integrity and consistency across approximately 35 Data Services, 85 Metering Services, 17 DNO's and 60 Suppliers. In
addition, the Data Services must provide an approximate total of 32 million daily (15 billion annual) consumption events
to Central Settlement.

The MHHS TOM is divided in 6 different functional areas:

1. MPAN Registration

2. Consumption

3. Meter Technical Details

4. Load Shapes

5. Industry Standing Data (ISD)

6. Settlement Reporting

7. SDS/MDR Interactions

A summary of the business processes (workflows) orchestrated within the MHHS TOM, including the dataflows
(interfaces) that need to be undertaken by the DIP, are provided below:

 BP-001 Change of Supplier

© Elexon 2024 Page 14 of 76

BP-001 Change of Supplier

TOM Sector Registration

Principal Actors Supplier (Outgoing/Incoming)

Registration Service (REGS)

Central Settlements (CS)

Additional Actors CSS, LDSO, Metering Services, EES

Correlation Id

Interfaces IF-001/PUB-001 - Notification of Change of Supplier

IF-002/PUB-002 - Change of Supplier – Registration Update to Supplier

Other interfaces (DTN,

CSS)

CSS1000

CSS2800

CSS2370

CSS2860

Linked BP BP002

BP003

BP004

BP009

BP008

BP003C

Linked design artefact BPD001

 BP-002 Change of Service – Metering Service

BP-002 Change of Service – Metering Service

TOM Sector Registration

Principal Actors Supplier (SUP) (Prospective/Current)

Registration Service (REGS)

New Metering Service (MSS, MSA, UMSO)

Old Metering Service (MSS, MSA, UMSO)

New/Existing Data Service (SDS, ADS, UMSDS)

LDSO

Additional Actors Electricity Enquiry Service (EES)

Correlation Id

Interfaces IF-031/PUB-031 - Supplier Service Appointment Request

IF-032/PUB-032 - Reg. Serv. Response to Supplier Service App Request

IF-033/PUB-033 - Registration Service Request for Service Appointment

IF-034/PUB-034 - Service Provider Response to Appointment Request

IF-035/PUB-035 - Registration Service Appointment Status Notification

IF-036/PUB-036 - Reg. Serv. Notification of Service App. & Supporting Info

IF-037/PUB-037 - Registration Service Notification of Service De-Appointment

IF-038/PUB-038 - Customer Direct Contract Advisory

IF-039/PUB-039 - Customer Direct Contract Advisory Response

Other interfaces (DTN,

CSS)

D149 / D150 – Traditional Meter MTDs
D268/D383/D384 – Advanced Meter MTDs

Linked BP BP001-Change of Supply

BP007-Disconnection

BP011-Change of Market Segment

BP004-Data Collection

© Elexon 2024 Page 15 of 76

BP003 – Change of Service – Data Service

BP003A – CSS/DCC Update

Linked design artefact BPD002

 BP-003 Change of Service – Data Service

BP-003 Change of Service – Data Service

TOM Sector Registration

Principal Actors Supplier (SUP) (Prospective/Incumbent)

Registration Service (REGS)

New Data Service (SDS, ADS, UMSDS)

Metering Service (MSS, MSA, UMSO)

Existing Data Service (SDS, ADS, UMSDS)

LDSO

Electricity Enquiry Service (EES)

Correlation Id

Interfaces IF-031/PUB-031 - Supplier Service Appointment Request

IF-032/PUB-032 - Reg. Serv. Response to Supplier Service App Request

IF-033/PUB-033 - Registration Service Request for Service Appointment

IF-034/PUB-034 - Service Provider Response to Appointment Request

IF-035/PUB-035 - Registration Service Appointment Status Notification

IF-036/PUB-036 - Reg. Serv. Notification of Service App. & Supporting Info

IF-037/PUB-037 - Registration Service Notification of Service De-Appointment

IF-038/PUB-038 - Customer Direct Contract Advisory

IF-039/PUB-039 - Customer Direct Contract Advisory Response

Other interfaces (DTN,

CSS)

D149 / D150 – Traditional Meter MTDs
D268 – Advanced Meter MTDs

Linked BP BP001-Change of Supply

BP007-Disconnection

BP011-Change of Market Segment

BP003A – CSS/DCC Update

BP003C – Transfer of Reads

BP004B – UMS Data Collection

Linked design artefact BPD003

 BP-003A CSS and DCC Update

BP-003A CSS and DCC Update

TOM Sector Registration

Principal Actors Registration Service

CSS (Central Switching Service)

DCC (Data & Communications Co.)

Data Service (Incoming)

Metering Service (Incoming)

Correlation Id

© Elexon 2024 Page 16 of 76

Interfaces IF-035/PUB-035 - Registration Service Appointment Status Notification

Other interfaces (DTN,

CSS)

Existing CSS to DCC Interface
Existing DCC to CSS Interface
CSS0200

Linked BP BP003-Change of Service – Data Service

BP003B – Change of Existing Service Appointment

Linked design artefact BPD03A

 BP003B Change of Existing Service Appointment

BP-003B Change of Existing Service Appointment

TOM Sector Registration

Principal Actors Registration Service

Supplier

Existing Metering Service (MSA, MSS, UMSO)

Existing Data Service (SDS, ADS, UMSDS)

Additional Actors EES

Correlation Id

Interfaces IF-031/PUB-031 - Supplier Service Appointment Request

IF-032/PUB-032 - Reg. Serv. Response to Supplier Service App Request

IF-033/PUB-033 - Registration Service Request for Service Appointment

IF-034/PUB-034 - Service Provider Response to Appointment Request

IF-035/PUB-035 - Registration Service Appointment Status Notification

Other interfaces (DTN,

CSS)

Linked BP BP-003A - CSS/DCC Update

BP-004 - Data Processing

Linked design artefact BPD03B

 BP-003C Transfer of Reads - Change of Data Service/Agreed Reads Process

BP-003C/D Transfer of Reads – Change of Data Service

TOM Sector Metering & Data Services

Principal Actors New/Outgoing Supplier

New/Outgoing Data Service (SDS, ADS)

Additional Actors

Correlation Id

Interfaces IF-015/PUB-015 - Request Consumption History

IF-041/PUB-041 - Cumulative Reading

D0300 – Disputed or missing Readings on Change of Supplier

Other interfaces (DTN,

CSS)

D0010 – Register Reading(s)

© Elexon 2024 Page 17 of 76

Linked BP BP-001 Change of Supplier

BP-003 Change of Data Service

BP-004 – Data Collection

BP-005 - Data Processing

Linked design artefact BPD03C

 BP-004 Data Collection

BP-004 Data Collection

TOM Sector Metering & Data Services

Principal Actors Supplier

Data Service (SDS, ADS, UMSDS)

Metering Service (MSA, UMSO)

Additional Actors DCC

MDR

Correlation Id

Interfaces IF-024/PUB-024 - Supplier Advisory Notifications

IF-041/PUB-041 - Cumulative Reading

IF-047/PUB-047 - Notification of the Publication of a Downloadable Asset (ISD)

Other interfaces (DTN,

CSS)

D0010 – Register Reading(s)
D0004 – Notification of Failure to Obtain Reading
D0001 – Request Metering System Investigation
DCC- SRV5.1
DCC – SRV4.x.x
D0388 – UMS Inventory
D0389 – UMS Response

Linked BP BP001 - Change of Supply

BP003 - Change of Agent – Data Services

BP008 – Change of Energisation

BP005 – Data Processing

Linked design artefact BPD004

 BP-005 Data Processing

BP-005 Data Processing

TOM Sector Metering & Data Services

Principal Actors Data Service (SDS, ADS, UMSDS)

LDSO

Supplier

Central Settlements (CS, LSS, MDS, VAS)

Registrations Service

Additional Actors EES

Correlation Id

Interfaces IF-021/PUB-021 – Settlement Period Consumption Data

IF-022/PUB-022 - LSS Period Data

IF-023/PUB-023 – LSS Totals Data

IF-040/PUB-040 – Annual Consumption

© Elexon 2024 Page 18 of 76

IF-041/PUB-041 – Cumulative Reading

Other interfaces (DTN,

CSS)

D0010 – Register Reading(s)

Linked BP BP004 – Data Collection

BP018 – Load Shaping Service

BP019 – Market-wide Data Service

Linked design artefact BPD005

 BP-007 Disconnection

BP-007 Disconnection

TOM Sector Registration

Principal Actors Supplier (SUP)

LDSO

Registration Service (REGS)

Data Service (SDS, ADS, UMSDS)

Metering Service (MSS, MSA, UMSO)

Central Settlements (CS)

Other Actors Electricity Enquiry Service (EES)

CSS

Correlation Id

Interfaces IF-009/PUB-009 - Registration Notification of Disconnection

IF-037/PUB-037 - Notification of De-Appointment

Other interfaces (DTN,

CSS, other)

CSS1900
CSS02370
CSS0300
CSS02860
D0262 – Rejection of Disconnection
D0132 – Details of Disconnection of Supply
DB03

Linked BP BP008-Change of Energisation

BP009-Change of Meter

Linked design artefact BPD007

 BP-008 Change of Energisation

BP-008 Change of Energisation

TOM Sector Registration

Principal Actors Supplier (SUP)

LDSO

Registration Service (REGS)

Data Service (SDS, ADS, UMSDS)

© Elexon 2024 Page 19 of 76

Metering Service (MSS, MSA, UMSO)

Central Settlements (LSS, MDS)

Other Actors EES

Correlation Id

Interfaces IF-007/PUB-007 - Update of Change of Energisation Status Outcome to Registration

IF-008/PUB-008 - Registration Service Notification of Change of Energisation Status

IF-041/PUB-041 - Cumulative Meter Reading

Other interfaces (DTN,

CSS)

D010 – Register Reading(s)
D0134 – Request to Change Energisation Status
D0139 – Confirmation or Rejection of Energisation Status Change
D0179 – Confirmation of Energisation/De-Energisation of Prepayment Meter

Linked BP BP005 – Data Processing

BP004 – Data Collection

BP009 – Change of Metering

Linked design artefact BPD008

 BP-009 Change of Metering

BP-009 Change of Meter

TOM Sector Registration

Principal Actors Supplier (SUP)

LDSO

Registration Service (REGS)

Data Service (SDS, ADS)

Metering Service (MSS, MSA)

Other actors EES

Correlation Id

Interfaces IF-005/PUB-005 - Metering Service MTD Updates to Registration

IF-006/PUB-006 - Registration Service Notification of MTD Update(s)

IF-041/PUB-041 - Cumulative Meter Reading

Other interfaces (DTN,

CSS)

D0149/D0150 – Traditional MTDs
D268/D383/D384 – Advanced MTDs
D0010 – Register Readings(s)
D0142 – Request for Installation or Change to a Metering System
D0002 – Fault Resolution Report or Request Decision for Further Action
D0221 – Notification of Failure to Install Metering System

Linked BP BP008-Change of Energisation

BP001 – Change of Supply

BP007-Disconnection

BP011-Change of Market Segment

BP004 – Data Collection

Linked design artefact BPD009

 BP-010 Change of Registration Data

BP-010(A/B/C/D) Change of Registration Data

TOM Sector Registration

Principal Actors Supplier (SUP)

CSS

LDSO

© Elexon 2024 Page 20 of 76

Registration Service (REGS)

Data Service (SDS, ADS, UMSDS)

Metering Service (MSS, MSA, UMSO)

Central Settlements (LSS/MDS)

DCC

Additional Actors EES

Correlation Id

Interfaces IF-018/PUB-018 - Notification of Registration Data Item Changes

IF-019/PUB-019 - Maintain MPAN Relationship

IF-020/PUB-020 - Maintain MPAN Relationship Response

IF-025/PUB-025 - Supplier Updates to Registration

IF-026/PUB-026 - Registration Service Notification of Supplier Data Changes

Other interfaces (DTN,

CSS)

CSS-2000
CS00300
DB02
D0386 – Manage Metering Point Relationships
DB05
Existing DCC to Registration Interface

Linked BP BP004 – Data Collection

BP009 – Change of Meter

BP011 – Change of ConType and/or Mkt Segment

Linked design artefact BPD010

 BP-011 Change of Connection Type and/or Market Segment

BP-011(11B/11C) Change of Connection Type and/or Market Segment

TOM Sector Registration

Principal Actors Supplier

Registration Service

Data Service Existing & Prospective (ADS, SDS)

Metering Service Existing & Prospective (MSS, MSA)

LDSO

Central Settlement

Additional Actors EES

Correlation Id

MHHS Interfaces IF-031/PUB-037 – Supplier Service Appointment Request

IF-032/PUB-032 – Registration Response to Service Appointment Request

IF-033/PUB-033 – Registration Request for Service Appointment

IF-034/PUB-034 – Service Provider Response to Appointment Request

IF-035/PUB-035 – Registration Service Appointment Status Notification

IF-036/PUB-036 – Registration Service Notification of Service Appointment & Supporting

Info

IF-037/PUB-037 – Notification of De-Appointment

IF-005/PUB-005 - Metering Service MTD Updates to Registration

IF-006/PUB-006 - Registration Service Notification of MTD Updates

IF-043/PUB-043 - Notification of Change of Connection Type

IF-044/PUB-44 – Notification of Change in Market Segment

IF-045/PUB-45 – Notification of Invalid or No SP’s Appointed

Other interfaces (DTN,

CSS)

D0142 – Request for Installation or Change to a Metering System
D0002 – Fault Resolution Report or Request Decision for Further Action
D0221 – Notification of Failure to Install Metering System

Linked BP BP002 - Change of Agent-Metering Services

BP003 - Change of Agent- Data Service

© Elexon 2024 Page 21 of 76

BP009 - Change of Meter

BP010 – Change of Registration Data

Linked design artefact BPD011

 BP-013 Demand Disconnection

BP-013 Demand Disconnection Events

TOM Sector Elexon Central Systems

Principal Actors Electricity System Operator (ESO)

Licensed Distribution System Operator (LDSO)

Balancing Settlement Code Company (BSCCo)

Market-wide Data Service (MDS)

Industry Standing Data (ISD)

Volume Allocation Run (VAS)

Other BSC Systems

Correlation Id

MHHS Interfaces PUB-001 - Notification of Change of Supplier

PUB-008 - Registration Service Notification of Change of Energisation Status

PUB-009 - Notification of LDSO Disconnection / CSS De-Registration

IF-013/PUB-013 -MDS Defaults Applied

PUB-018 - Notification of Registration Data Item Changes

IF-014/PUB-014 -Rejected Consumption Data Submission

PUB-021- UTC Settlement Period Consumption Data

PUB-026 - Registration Service Notification of Supplier Data Chg

PUB-036 - Registration Service Notification of Service Appointment & Supporting Info

PUB-043 - Registration Service Notification of Change of Connection Type

PUB-044 - Registration Service Notification of Change of Segment

PUB-045 - Registration Service Notification of Invalid Segment or No Agents Appointed

Other interfaces (DTN,

CSS)

Reports
MHHS-REP-001

MHHS-REP-002

MHHS-REP-005

MHHS-REP-006

MHHS-REP-D0369

MHHS-REP-D0370

MHHS-REP-D0373

MHHS-REP-D0374

Linked BP BP005-Data Processing

BP010-Change of Registration Data

Linked design artefact BPD013

 BP-016 Consumption Amendment

BP-016 ‘Override Read’ Submission & Consumption Amendment Processing

© Elexon 2024 Page 22 of 76

TOM Sector Elexon Central Systems

Principal Actors Supplier

Data Service Existing/Previous (SDS, ADS, UMSDS)

Central Settlements

BSC Dispute Process

Consumption Amendment ‘Audit Function’ TBD

LDSO

Correlation Id

MHHS Interfaces IF-027/PUB-027 - Consumption Amendment Request

IF-028/PUB-028 - Consumption Amendment Outcome

IF-021/PUB-021- UTC Settlement Period Consumption Data

IF-014/PUB-014 ECS Rejection of Settlement Period Cons. Data

IF-041/PUB-041 Cumulative Reading

Other interfaces (DTN,

CSS)

Linked BP BP005 – Data Collection

BP019 – Market-wide Data Service

Linked design artefact BPD016

 BP-017 Optional SDS/MDR Standard Interactions (CR023)

BP-017 ‘Override Read’ Submission & Consumption Amendment Processing

TOM Sector MDR-SDS Interactions

Principal Actors Smart Data Service (SDS)

Meter Data Retrieval Service (MDR)

Data Integration Platform (DIP)

DCC

Correlation Id

MHHS Interfaces IF-061/PUB-061 – MDR Start Collection

IF-062/PUB-062 - MDR Start Collection Response

IF-063/PUB-063 - MDR Stop Collection

IF-064/PUB-064 – MDR Consumption

IF-065/PUB-065 – MDR Reading

Other interfaces (DTN,

CSS)

Linked BP BP003 – Data Service Appointment

BP0003B – CSS/DCC Update (Change MDR)

BP005 – Data Processing

Linked design artefact BPD017

 BP-018 Load Shaping Service

BP-018 Load Shaping Service

TOM Sector Elexon Central Systems

Principal Actors Load Shaping Service (LSS)

Industry Standing Data (ISD)

Market-wide Data Service (MDS)

Other Actors EES

© Elexon 2024 Page 23 of 76

Correlation Id No

MHHS Interfaces IF-001/PUB-001- Notification of Change of Supplier

IF-008/PUB008 - Registration Service Notification of Change of Energisation Status

IF-009/ PUB-009 - Notification of LDSO Disconnection / CSS De-Registration

IF-018/ PUB-018 - Notification of Registration Data Item Changes

IF-021/PUB-021 - UTC Settlement Period Consumption Data

IF-022/PUB-022 - LSS Period Data

IF-023/PUB-023 – LSS Totals Data

IF-026/PUB-026 -Registration Service Notification of Supplier Data Chg

IF-036/PUB-036 - Registration Service Notification of Service Appointment & Supporting

Info
IF-043/PUB-043 - Registration Service Notification of Change of Connection Type

IF-044/PUB-044 - Registration Service Notification of Change of Segment

Other interfaces (DTN,

CSS, Elexon)

EL-022
EL-023

Linked BP BP005 – Data Processing

BP010 – Change of Registration Data

BP019 – Market-wide Data Service

BP001 – Change of Supply

BP003 – Change of Data Service

BP008 – Change of Energisation

BP007 – Disconnection

BP011 – Change of ConType and/or Mkt Segment

Linked design artefact BPD018

 BP-019 Market Wide Data Service

BP-019 Market Wide Data Service

TOM Sector Elexon Central Systems

Principal Actors Load Shaping Service (LSS)

Volume Allocation Service (VAS)

Industry Standing Data (ISD)

Market-wide Data Service (MDS)

Other Actors Other BSC Systems

Electricity Market Reform (EMRS)

Correlation Id No

MHHS Interfaces IF-001/PUB-001 - Notification of Change of Supplier

IF-008/PUB008 - Registration Service Notification of Change of Energisation Status

IF-009/PUB-009 - Notification of LDSO Disconnection / CSS De-Registration

IF-013/PUB-013 -MDS Defaults Applied

IF-014/PUB-014 -Rejected Consumption Data Submission

IF-018/PUB-018 - Notification of Registration Data Item Changes

IF-021/PUB-021 - UTC Settlement Period Consumption Data

IF-022/PUB-022 - LSS Period Data

IF-026/PUB-026 -Registration Service Notification of Supplier Data Chg
IF-036/PUB-036 - Registration Service Notification of Service Appointment & Supporting

IF-040/PUB-040 - Notification of ECS Annual Consumption
IF-043/PUB-043 - Registration Service Notification of Change of Connection Type

IF-044/PUB-044 - Registration Service Notification of Change of Segment

© Elexon 2024 Page 24 of 76

IF-045/PUB-045 Registration Service Notification of Invalid Segment or No Agents

Appointed

REPORTS
MHHS-REP-002

MHHS-REP-002A

MHHS-REP-090

MHHS-REP-006

MHHS-REP-020

MHHS-REP-030

MHHS-REP-060

ELEX-REP-001

MHHS-REP-009

MHHS-REP-D0354

Other interfaces (DTN,

CSS, Elexon)

ELEX-REP-001

Linked BP BP005 – Data Processing

BP010 – Change of Registration Data

BP018 – LSS

BP012 – ISD

BP020 – Volume Allocation Service

BP001 – Change of Supply

BP003 – Change of Service Provider – Data Service

BP008 – Change of Energisation

BP007 – Disconnection

BP011 – Change of ConType and/or Mkt Segment

Linked design artefact BPD019

 BP-020 Volume Allocation Service

BP-020 Volume Allocation Service

TOM Sector Elexon Central Systems

Principal Actors Volume Allocation Service (VAS)

Industry Standing Data (ISD)

Market-wide Data Service (MDS)

Other actors Other BSC Systems

Correlation Id No

MHHS Interfaces REP-003

REP-003A

REP-004

REP-007

REP-008

REP-090

ELEX-REP-040

ELEX-REP-050

ELEX-REP-060

ELEX-REP-080

ELEX-REP-P0048

ELEX-REP-P0236

ELEX-REP-P0237

ELEX-REP-D0081

© Elexon 2024 Page 25 of 76

ELEX-REP-D0296

ELEX-REP-D0266

ELEX-REP-D0369

ELEX REP-D0370

ELEX-REP-D0374

ELEX-REP-D0373

Other interfaces (DTN,

CSS)

P0181
P0182
P0183
P0012
P0034
P0236
P0191

Linked BP BP005 – Data Processing

BP019- Market Wide Data Service

BP021- Industry Standing Data

Linked design artefact BPD020

 BP-021 Industry Standing Data

BP-021 Industry Standing Data

TOM Sector Elexon Central Systems

Principal Actors BSCCo

Industry Standing Data (ISD)

Other actors Other BSC Systems (LSS, MDS, VAS)

All TOM actors for receipt

Correlation Id No

MHHS Interfaces IF-047/PUB047 – ISD Data Notification

Other interfaces (DTN,

CSS)

Linked BP BP018 – Load Shaping Service

BP019 – Market-wide Data Service

BP020 – Volume Allocation Service

Linked design artefact BPD021

3.5 MHHS Message/Event Channel Instances

The MHHS interfaces have the non-functional requirements placed on each of the messages channels. The following

metrics are defined:

• Sender – DIP will check participant has the correct role for the channel

• Recipient:

o Always

o Primary

o Secondary

• Workflow Correlation Id – used to track business process – section 4.2.3.3 for description.

© Elexon 2024 Page 26 of 76

• Security category

For an up to date list see MHHSP-DES138 Interfaces Catalogue – IF_LIST tab

3.6 Actor Workflows Summary

The table below summarises the data flows that each service has some participation within; all the outbound

(interfaces) and the inbound (publications) messages/events. (n.b. inbound/outbound with respect to the service).

Message Event Channels

Actor Context Out bound In bound

MSA Sending, Current,

Previous, Incoming,

Prospective

IF-005, IF-007, IF034, IF-038, IF-041 PUB-003, PUB-006, PUB-008,

PUB-018, PUB-026, PUB-033,

PUB-035, PUB-036, PUB-037,

PUB-039, PUB-043, PUB-045,

PUB-047, PUB-020

MSS Sending, Current,

Previous, Incoming,

Prospective

IF-005, IF-007, IF034, IF-038, IF-041 PUB-003, PUB-004, PUB-006.

PUB-008, PUB-018, PUB-026,

PUB-033, PUB-035, PUB-036,

PUB-037, PUB-039, PUB-043,

PUB-045, PUB-047, PUB-020

UMSO Sending, Current,

Previous, Incoming,

Prospective

IF-007, IF-034 PUB-003, PUB-008, PUB-033,

PUB-035, PUB-036, PUB-037,

PUB-043,

ADS Sending, Current,

Previous, Incoming,

Prospective

IF-021, IF-015, IF034, IF-038, IF-

041, IF-028

PUB-003, PUB-006, PUB-008,

PUB-009, PUB-016, PUB-013,

PUB-014, PUB-018, PUB-022,

PUB-023, PUB-024, PUB-026,

PUB-027, PUB-033, PUB-035,

PUB-036, PUB-037, PUB-039,

PUB-040, PUB-041, PUB-043,

PUB-045, PUB-047, PUB-020

SDS Sending, Current,

Previous, Incoming,

Prospective

IF-021, IF034, IF-038, IF-041, IF-

028, IF-061, IF-063

PUB-003, PUB-006, PUB-008,

PUB-009, PUB-013, PUB-014,

PUB-018, PUB-022, PUB-023,

PUB-024, PUB-026, PUB-027,

PUB-033, PUB-035, PUB-036,

PUB-037, PUB-039, PUB-040,

PUB-041, PUB-043, PUB-045,

PUB-047, PUB-020, PUB-062,

PUB-064, PUB-065

MDR IF-062, IF-064, IF-065 PUB-061, PUB-063, PUB-006,

PUB-008, PUB-026, PUB-024

UMSDS Sending, Current,

Previous, Incoming,

Prospective

IF-021, IF-034, IF-028 PUB-003, PUB-008, PUB-013,

PUB-014, PUB-018, PUB-022,

PUB-023, PUB-024, PUB-027,

PUB-033, PUB-035, PUB-036,

PUB-037, PUB-040, PUB-043

MDS IF-013, IF-014, IF-040 PUB-001, PUB-003, PUB-008,

PUB-009, PUB-018, PUB-021,

© Elexon 2024 Page 27 of 76

PUB-022, PUB-026, PUB-036,

PUB-043, PUB-044, PUB-045,

PUB-020

CS IF-013, IF-014, IF-022, IF-023, IF-

047, IF-040

PUB-008, PUB-009, PUB-018,

PUB-021, PUB-026, PUB-036,

PUB-043, PUB-044

LSS IF-014, IF-022, IF-023 PUB-001, PUB-008, PUB-009,

PUB-018, PUB-021, PUB-026,

PUB-036, PUB-043, PUB-044

REGS IF-001, IF-002, IF-003, IF-006, IF-

008, IF-009, IF-018, IF-026, IF-032,

IF-033, IF-035, IF-036, IF-037, IF-

039, IF-043, IF-044, IF-045, IF-020

PUB-005, PUB-007, PUB-051

(non-DIP), PUB-031, PUB-025,

PUB-034, PUB-038, PUB-047,

PUB-040, PUB-019

SUP Current, Previous,

Incoming

IF-024, IF-025, IF-027, IF-031, IF-

041, IF-019

PUB-001, PUB-002, PUB-003,

PUB-004, PUB-006, PUB-007,

PUB-008, PUB-009, PUB-018,

PUB-021, PUB-022, PUB-023,

PUB-026, PUB-028, PUB-032, ,

PUB-035, PUB-036, PUB-037,

PUB-039, PUB-041, PUB-043,

PUB-044, PUB-047, PUB-020

LDSO PUB-001, PUB-003, PUB-006,

PUB-008, PUB-009, PUB-013,

PUB-014, PUB-018, PUB-019,

PUB-020, PUB-021, ,PUB-026,

PUB-036, PUB-037, PUB-040,

PUB-041, PUB-043, PUB-044,

PUB-045, PUB-047

EES PUB-006, PUB-008, PUB-009,

PUB-018, PUB-020, PUB-026,

PUB-036, PUB-037, PUB-039,

PUB-040, PUB-043, PUB-044,

PUB-047, PUB-050

Any

Public PUB-022, PUB-023

© Elexon 2024 Page 28 of 76

4 Messaging Architecture

4.1 Logical View

Message Channel

DIP Participants

Market Participant

Organisation

DIP Connections

• DIP Role Id

• DIP Id

• DCP Id

Event Code

Sender Interface

Publication

DIP Connection Provider

DCP Id

Umbrella Organisation

DIP Roles

Figure 2 - DIP Workflows logical view

The MHHS TOM workflows will be orchestrated by Message/Event channels where messages are exchanged
between Market Participants via the DIP. A Message/Event channel represent a message exchange between two
Market Participants, an inbound flow called an Interface and a corresponding outbound flow called a Publication.

When on-boarded a Market Participant Organisation (MPO) will be assigned one or many DIP (Participant) IDs and
will have one or many market roles or services, depending on the roles they have registered for and the roles they
are permitted to have.

For organisations that control multiple Market Participant Organisations the concept of an Umbrella Organisation
exists; the Umbrella organisation provides a mechanism to logically link their different Market Participant Organisations,
e.g. UKPN operates as three distinct MPOs: Eastern Power Networks PLC, London Power Networks PLC and South
Eastern Power Networks PLC .

Access to individual Message/Event channels will be determined by a set of market roles (services), or possibly
only a single pair of roles, that can send or receive the messages on that channel. A role will either be allowed to send
or receive messages on a specific channel.

Market Participants will be responsible for managing the message/event channels determined by their market roles;
this will be the default configuration.

Market Participants will have different options to manage how to manage the physical delivery/sending of messages
by extending the default configuration. They will be able to assign a DIP Connection Provider – A Market Participant
may wish for an alternate party/agent, a DIP Connection Provider, to proxy a specific role or all their roles on their
behalf. In this scenario, the Market Participant will need to assign responsibility of their access to DIP to the DIP

© Elexon 2024 Page 29 of 76

Connection Provider by allocating the chosen role(s) to their provider. A DIP Connection Provider is a separate
organisation that must be on-boarded separately as a Market Participant with a DIP Connection Provider role.

This ability to provide different proxies for managing different channels does not alter the addressing of messages;
messages will still be addressed to the primary DIP Participant ID rather than any of the proxy recipients, i.e. the
addressee recipient or sender will always be the logical recipient/sender. The proxy senders/recipients, i.e. the physical
senders/recipients, will require their own set of certificates in order to interact with the DIP. The DIP will be aware of the
proxy recipients and will digitally sign messages appropriately, i.e. the physical sender or receiver of the message.

 DIP & Market Participant IDs/Roles Codes

Within the MHHS TOM there are a number of business processes that are orchestrated by both DIP and DTN data

flows. In order to support these business process Market Participants need a common mechanism for identification

across both systems. This will be achieved by having a mapping between DIP IDs/role codes and Market Participant

IDs/roles codes. Three options were considered:

1. Reuse of Market Participant Id/ Market Role Codes in DIP Participant Ids/Role Codes
2. Map Market Participant Ids to DIP Ids and map Market Participant Role Codes to DIP Role Codes
3. Map Market Participant Ids/Roles Code pairs to DIP Ids/Role Codes

The first two options were considered to be too restrictive and tied up with legacy issues around the data, and the third

option provided the greatest flexibility for Market Participants and hence was the option chosen.

In practice this will work in the following way:

• DIP Participant ID and DIP Role will be used to Identify participants within the DIP

• DIP Addressing/Routing will utilise DIP Participant ID & DIP Role code

• ISD (entity M16) will enable a 1-2-1 mapping between each DIP Participant ID /Role combination and DTN

Participant ID/Role combination

• Participants will need to utilise ISD to use DIP Participant ID/Role to identify the ‘DTN delivery point’ when

sending D-Flows

• Conversely, ISD will need to be used to understand where D-Flows are received via DTN, and the mapped DIP

Participant/Role.

4.2 Message/Event Channel

Each message channel will use a standard RESTful architecture for both the inbound Interface and the outgoing

publication: a Send Message API (https:/api.{environmment}.energydataintegrationplatform.co.uk/{version}/dip-

channel/{IF-xxx}) for incoming messages and a Receive Messages webhook for outgoing messages. Each message

channel has both synchronous and asynchronous methods for reporting status/error messages back to the Sender.

A standard event/message channel has the following pattern. For context, the points at which the different level of

validation are also shown:

© Elexon 2024 Page 30 of 76

Recipient

2. Initial validation
successful 4. Relay message

to target

Level 1

Sender DIP

1. API: post /DIP-
Channel/{id}

5. webhook:
https://bigEnergyServer.com/

receiveEvents

Level 2 Level 3
Level 4

7. API: /
StatusMessage

10. webhook:
receiveStatusMessages

https://
EnergyOneServer.com/

send/callback/here

8. Relay status back
to Sender

9. Send status back
to Sender

6. Run worker task
(asynchronous)

3. Run DIP task
(asynchronous)

Sender
Level 5

Alternate
PartyLevel 6

Register webhook:
0. post DIP-Channel/{id}/

pubConfig

201:207
InterfaceResponse

Register webhook:
0. post /StatusMessages/

config

Figure 3 - Message Channel Pattern and validation levels

In a message exchange there will be 4 levels of message acceptance/validation within the message channel itself:

• Level 1 - initial synchronous validation by the DIP

• Level 2 - secondary asynchronous validation by the DIP

• Level 3 - initial synchronous validation by the Participant

• Level 4 - secondary asynchronous validation by the Participant

Then, outside of the message channel other validation may occur, levels 5 &6, which relates to the workflow being

undertaken:

• Level 5 – Response through a new message channel where the original recipient becomes the new sender,

e.g. IF-006 provides a response to IF-005 (see section 5.4)

• Level 6 – where the response is via a third-party, e.g. Service Appointment by the Supplier (IF-031) via the

Registration Service - the outcome and if appropriate error reason code will be contained with the body of a

subsequent message (IF-035).

The processing within a message channel follows the following pattern:

0. Recipient registers webhook for receipt of publication; sender registers webhook for the receipt of status
messages.

1. Sender sends message/events to the DIP via the post /DIP-Channel/{IF-xxx} API, see section 4.4.

2. Initial receipt of events/messages by the DIP is accompanied with an auditable acknowledgement. This will
include the Level 1 validation http response, see section 4.4.3.

3. The message traverses through the DIP where it undertakes internal processing where Level 2 validation also
occurs, see section 4.3.

4. Message is relayed to the intended recipients

5. Onward delivery of message/events from the DIP to the recipient occurs via registered webhook with an
auditable acknowledgement and Level 3 validation, see section 4.6.

6. The recipient will undertake further validation checks (Level 4).

7. If an error condition is found these are reported back to DIP via the StatusMessage API, see section 4.7

8. Both the Level 3 synchronous and Level 4 asynchronous response reported back to Sender

© Elexon 2024 Page 31 of 76

9. DIP relays all Level 2/3/4 responses to the Sender

10. Sender receives all Level 2/3/4 responses via the StatusMessages webhook, see section 4.8

It should be noted:

• the DIP handles the message in two phases, a synchronous check at the API that are communicated directly
back to the Sender, and then further asynchronous checks and addressing that are carried out once the
message has been initially received. The rationale behind the split, is that the initial API is intended to be as
lightweight as possible thereby increasing message submission speed.

• Where no error condition is encountered no event/message acknowledgement other than the initial API
response is sent back to the Sender.

• Some business process acknowledgements, either positive or negative, are recognised as distinct
message/event flows (identified in table MHHS Interfaces Catalogue).

• Security between the Market Participants and the DIP is ensured by securing a MTLS connection via TLS
handshake (see MHHS Code of Connection document)

• The guideline for message processing is that on receipt of message a Market Participant should endeavour to
validate the message contents as much as feasibly possible and relay all validation errors back to the Sender,
i.e. not stop at the first error.

• Detail around the validation checks that are undertaken are described in the MHHS Interfaces Catalogue.

 Message Structure

Each message channel is defined by a specific interface definition, which defines the incoming messages, and also a
publication, which defines the corresponding outgoing message. There is a direct 1:1 mapping between interfaces
and publications.

Common Block

S1 – Sender Info – Sender set

A0 – Addressing

R0 - Response

M0 - MPAN

Common Block

S1 – Sender Info – Sender set

D0 – Transactional Info – DIP Set

R0 - Response

M0 - MPAN

Custom Block

IF-001

IF-002

IF-003

IF-xxx

IF-xxx

IF-064

Incoming Event/Message Outgoing Event/Message

Sender Recipient

DIP

 Interface Publication

API: sendEvents webhook:
receiveEvents

S0 – Interface Info – Sender set S0 – Interface Info – Sender set

A0 – Addressing

Figure 4 –Message Channel definition – data

© Elexon 2024 Page 32 of 76

Each message will have two distinct components a common block and a custom block. The contents of the common

block in the interface incoming message will differ from that of the outgoing message in the publication whilst the

custom block passes through the DIP unchanged.

In a standard message exchange the following blocks are sent and received:

 Sender DIP Archive Receiver

Interface API /dip-

channel/{IF-

xxx}

 MP webhook

Header/SO Sender ✖ ⃟ ⃟

Header/S1 Sender ✖ ⃟ ⃟

Header/AO Address ⊠ ⊠ ⃟ ⃟

Header/RO Response ⊠ ⊠ ⃟ ⃟

Header/DO DIP ✖ ⃟ ⃟

Header/MO MPAN ✖ ⃟ ⃟

Message Body ✖o ⃟ ⃟

When a message is sent the Sender sends a message with the blocks indicated above. The blocks with a ✖ are the

sole responsibility of the Sender or the DIP, whilst those ⊠ some of the fields are populated by both the Sender and

DIP. ✖o – denotes the potential for some data fields to be obfuscated by the DIP. The message blocks written to

archive and sent to the Recipient are marked ⃟.

The descriptions of each of the common blocks is given in the API definitions below.

The descriptions of custom block will depend on the specific interface/publication and is defined in the MHHS Interface

catalogue.

 Optional/Nullable Fields

Messages adopt the following convention for representing optional and required data items in messages: all data items

properties are marked as required, where data items are optional then they will be marked as nullable. The underlying

datatype for each data item will reflect the nullable property, i.e., nullable – true/false.

Worked examples for different data types can be seen in the table below:

Data Type Nullable value to use

String null

Boolean null

Number null

This is also valid for any enumerations that allow nullables.

 Message Traceability & Repudiation

© Elexon 2024 Page 33 of 76

Messages exchanged over the DIP will leave a discernible audit path as they progress from initial receipt to final
delivery via the API transaction logs and the message archive. Each individual message will be uniquely identified with
a Sender Unique Reference by the Sender and the DIP will provide a corresponding Transaction Id for each message
that will be returned to the Sender in the API HTTP response body of the Send Messages API call.

4.2.3.1 Sender Unique Reference

The Sender Unique Reference identifier for the event/message provided by the message Sender. The algorithm for

setting this is provided below:

S - Interface Id - Participant Id - Role Id - Date - Sequence (hex)/Participant Ref

Eg.

Interface Id ‘IF-005’

Participant Id ‘0123456789’

Role Id ‘SUP’

Date ‘2022-03-13’

Sequence/Ref ‘12345687a1234567a ’

Hence ‘S-IF-005-0123456789-SUP-20222313-12345687a1234567a’

It is imperative that the first part of the Sender Reference obeys the format described above so that a message can be

instantly recognised and traced, i.e. Interface Id, Participant Id, Role Id and date. The final sequence/ref has only the

following restrictions:

• must use standard alphanumeric characters

• needs to guarantee uniqueness for the Sender Unique Reference

• not exceed the length of the Sender Unique Reference (200 - which includes the prefix components)

The DIP will validate the Interface Id, Participant Id and Role Id only on receipt of the message, i.e. no individual check

of date or sequence, however, the whole Sender Unique Reference will be checked for duplicates.

4.2.3.2 Transaction Id

Unique identifier for the event/message provided by the DIP and for the Sender it provides a technical acknowledgment
for the message. The Transaction Id is added to the message (D0 block) and can be used to uniquely identify a
message as it traverses through the system. Transaction Id generated by the DIP will take the form:

T - Interface Id - Participant Id - Role Id - Date - Sequence (hex)

Eg.

Interface Id ‘IF-006’

Participant Id ‘0345890082’

Role Id ‘SUP’

Date ‘20220401’

Sequence ‘1234cc091234560987654abc’ (hex)

‘T-IF-006-0345890082 -SUP-20220401-1234cc091234560987654abc’

The sequence component will be sequential within each message channel, however, this cannot be relied upon

categorically for sequential message processing. The processing behind the APIs will be event driven serving multiple

endpoints simultaneously and maintaining a genuine ordered sequence is not a requirement. The sequence will only

guarantee uniqueness.

© Elexon 2024 Page 34 of 76

4.2.3.3 (Workflow) Correlation Id

For some MHHS business processes (defined in the MHHS Interfaces Catalogue) there is a requirement for each
specific workflow instance to be uniquely identified and then for all messages in that workflow to reference the unique
ID. This will be the Workflow Correlation ID. (A similar requirement exists in Faster Switching). This will operate as
follows:

1. The party initiating the workflow will send the first message in the sequence to the DIP.

2. The DIP will recognise events/messages arriving on certain channels that need a unique Workflow Correlation
ID to be generated.

The DIP will generate the Workflow Correlation ID, written to the message for onward processing and returned to the
message sender as part of the HTTP response body.

The Workflow Correlation Id generated by the DIP will take the form:

CI - Date - Sequence

Eg.

Date ‘20220401’

Sequence ‘1234567890abc1234cc0912345698754abc ’ (hex)

‘CI-20220401-1234567890abc1234cc0912345698754abc’

 Message Security

Some of the data flowing through the DIP will include sharing personal data and fall within the remit of the UK GDPR or
confidential or sensitive information. Hence, there will be a requirement to ensure the security of the data, which should
be achieved by the use of an mTLS connection between DIP and Participant. The subject of message security is
covered in greater detail in the MHHS End-to-End Security Architecture document.

There is also a requirement for message repudiation, i.e., ensuring a message is sent from only the expected party,
hence all messages sent to the DIP will be digitally signed by the Sender.

To help simplify the message privacy classification, initial analysis has identified four different security categories:

Category Description Message Signing

1 Public Data Digitally signed

2 MPAN Digitally Signed

3 MPAN + PII Digitally Signed

4 MPAN + Consumption data Digitally Signed

Each of the MHHS interfaces will be assigned one of these categories.

The requirement is for all messages to be signed (details to be provided in the MHHS Code of Connection document).
Also, for information, the requirement for end-to-end encryption on message channels was dropped earlier in Spring
2022.

 JSON Message Encoding & Decoding

© Elexon 2024 Page 35 of 76

All JSON messages should be encoded using UTF-8 as a standard, to ensure correct encoding and decoding across

participants.

 Service Desk Integration

When a message is received in the DIP, as part of its internal processing, the DIP will add a Service Desk URL to a

message. This is a pre-emptive and will provide a URL with pre-populated parameters, where either the receiver of the

original message or the response message, will be able to create a new or access an existing service desk ticket in the

event on an issue with the message. It is envisaged that Market Participants will have application front-ends displaying

logs of DIP messages from their own IT systems, and activating this URL will access the DIP Service Desk. Obviously,

this link could equally well be activated from a DIP console showing DIP message logs. Under everyday operations this

capability is not required as the majority of messages are processed successfully, however, for the situations where an

issue arises, parties will have an easy path into the Service Desk. (To be agreed during next phase of DIP design).

 Audit Trail Integration

The proposal is for the DIP to add a URL to the message that will locate the message in the corresponding audit

screen on the DIP (to be agreed during next phase of DIP design).

4.3 DIP Processing

At the physical interface the DIP will establish an encrypted mTLS connection in which both parties use X.509 digital
certificates to authenticate with each other. The details of the connection requirements see MHHS Code of Connection
document.

The DIP will also validate the digital signature of the message using the Sender’s public key.

After completing the security checks the DIP will undertake the following steps:

• Message validation

• Message obfuscation

• Writing message to archive

• Addressing & Routing – forward message to each of the intended recipients - see 4.3.1 below

A full description of the DIP’s internal processing is provided in the DIP Functional Specification.

 Message Addressing & Routing

The DIP is responsible for sending message to the correct recipients. Within the MHHS TOM there are three
recognised types of message addressing:

Name Action Responsibility

Targeted or Primary Routing DIP uses the Primary recipient List in the A0 block in

the message header. The Primary recipient is only

known by the Sender.

Sender

MPAN Based Lookup or

Secondary Routing

The MPAN core in the M0 block and optionally the

Event Code and/or other fields (to determine the

targeted roles) provides the lookup to the MPAN

lookup address function.

DIP

Always

For a specific message channel a message is either
always sent to a named participant or all participants

DIP

© Elexon 2024 Page 36 of 76

assigned to a designated role (role is assigned to the
message channel)

The DIP can apply a single or all types of addressing to a single message channel. Messages are sent to DIP
Participant Id/DIP Role Codes, hence a DIP Participant can receive a message more than once if they undertake
multiple roles that are the recipients for the message. However, each message will only be sent once to a single DIP
Participant Id/DIP Role Code pairing.

The Interface Id and event Code/other fields determine which type of addressing is appropriate (see routing rules table
in the Interfaces Catalogue (ref MHHS-E2E003-Physical Interface Specifications)), if message is inappropriately
addressed by the Sender, i.e. primaryRecipient is undefined when it is required, then an error message is returned.

The DIP will add the correct addresses to the Addressing block (A0) to the message before the message is archived.

 Message/Event Obfuscation

There is the requirement for the DIP to potentially obfuscate the contents of a message based on the recipient's role
within a particular message channel. This requirement is implemented so that the message sender does not have to
send multiple messages to different recipients containing a subset of data; instead, a single message is sent to multiple
recipients. As all data items within a data block are mandatory, the DIP will replace the data with the flowing values:

String values - multiple ‘x’ for the maximum length of the field

Date values – the date ‘1900-01-01 00:00’ is used

Numeric values – no requirement at present

Boolean values – true

DIP IDs – ‘9999999999’ (to ensure it remains a numeric string for regex validation)

MPIDs – ‘XXXX’ (to ensure the regex that enforces capitalisation endures)

Obviously, it is the responsibility of the recipient to know that they are receiving obfuscated data on a specific message
channel and must not solely rely on message contents.

4.4 Send Messages API

The send event API (https:/api.{environmment}.energydataintegrationplatform.co.uk/{version}/dip-channel/{IF-xxx}) is
used to submit messages to the DIP. The full Open API definition can be found here:
https://app.swaggerhub.com/organizations/MHHSPROGRAMME 2

The message sender will need to send messages to channel specific endpoints, i.e. all messages need to be of the
same IF. The messages within a single transaction (API call) can have mixed MPANs.

The return code and response body provides the sending Participant with an auditable trace on the success of the
receipt of the messages by the DIP.

 Sender Responsibilities

On sending a set of events/messages the Sender will undertake the following:

Message Construction

On sending a message the Sender is responsible for construction the message header and payload as described in
the section below. The use of Sender Unique Reference is described below.

Message Addressing

When a message is sent, a Participant will need to be aware of the type of addressing that needs to be applied and
address the message accordingly. The type of addressing for each message channel is defined in MHHS Interfaces

2 Whilst the APIs are being designed the API server and base URL defined in the API swagger definitions are only interim
values. Once the final hosting arrangements for the DIP are known then these will change to the final correct values.

Commented [RG1]: DIN-900

https://app.swaggerhub.com/organizations/MHHSPROGRAMME

© Elexon 2024 Page 37 of 76

Catalogue. The Sender is only responsible for primary addressing, the DIP is responsible for secondary and always
addressing.

Message Signing

Once the message has been constructed it needs a digital signature (see MHHS Code of Connection document) and
written to the message header

API Call

The sender has the ability to send multiple event/messages in a single API. Maximum number of records sent in a
single call (initial proposal is 50,000). Messages can only be sent to a single message channel within the same API
call.

API Response

The message sender will need to process the API response. The HTTP return code will provide the return for the whole
transaction and needs to be considered with the response body as it will provide the details for the acceptance or
otherwise for each message sent and will provide Transaction Ids for each message referenced by the Sender Unique
Reference, details below.

Back Off and Retry

Participants are expected to adopt a retry with exponential back off (up to a configurable maximum wait time) if there is
a failure in connecting to the DIP.

Multiple Connections

Participants will be allowed to have multiple connections to the API endpoint. Participants may wish to logically
separate their own interfaces and have a single connection per interface and the DIP will support this pattern. In the
detailed design phase detailed connection patterns will be described.

 Message Structure

4.4.2.1 Common Block

The Sender will need to populate the following blocks on sending a message. The tables detail the validation the DIP
will undertake on each of the message fields.

The Sender blocks are split between S0 & S1. Both are fixed formats, however, the S0 block has different enumerated
values for each of the respective fields, whilst the S1 blocks does not have this separation. Consequentially, each
interface definitions has a bespoke S0 block. Please see the API definitions for the next level of detail.

4.4.2.2 Sender (S0) block (mandatory)

The Sender (S0) block describes:

Field Description DIP Validation

Message Interface ID The interface Id Check valid interface Id

Event Code Used to route messages to specific parties
Check Interface Id/Event

Code pair is valid

Schema Version Version of the schema used in the message
Check version is valid
for the interface in
question.

4.4.2.3 Sender (S1) block (mandatory)

The Sender (S1) block describes:

Field Description DIP Validation

Environment
The environment indicator, i.e. PROD, PREPROD, SIT,

UIT, DEV

Check environment is in
allowed list of values.

Check environment is

correct for the current

instance.

© Elexon 2024 Page 38 of 76

Field Description DIP Validation

Sub Text
Optional field used in testing to uniquely identify a set of

messages

n/a

Sender Unique Reference

Unique identifier for the event/message provided by the

message Sender. See note below that provides

guidance on setting this field

Check sender unique

reference obeys format

specified below

Sent Timestamp Date/time (UTC) message was sent
Check valid/date, i.e.

complies with RFC-3339

Sender ID The Market Participant who sent the message. Check valid participant

Sender Participant Role The capacity in which the message was sent

Check Sender ID/
Sender Participant role
is entitled to send
message

DIP Connection Provider ID If message sent by a nominated third-party

Check DIP CP ID/
Sender Participant Role
is authorised to send
messages on behalf of
Sender ID

Sender Correlation Id
Populated when the IF is used in the response to the

primary message in the workflow.

Check obeys format

The S1 is mandatory for all messages.

4.4.2.4 Response (R0) block (optional)

Field Description DIP Validation

Response Code Response Code n/a

Response Message Response Message n/a

The response block is only used when the message is a “response” to an initial message, e.g. IF-006 is a response to

an IF-005 message (see MHHSP-DES138 -Interface Catalogue for the interfaces that require a R0 block), and the

Response Correlation Id is that sent in the original message – see section 5.4.

4.4.2.5 Address (A0) block (optional)

Field Description DIP Validation

Primary Recipient Id(s)
Used to route messages to targeted parties (Primary

Addressing)

Check participant has the

corresponding role

(permission) to receive

message

The A0 block is only populated on an interface-by-interface basis, i.e. not all Interfaces require primary addressing. The

interface catalogue (MHHSP-DES138-Interface Catalogue) has the corresponding details.

4.4.2.6 Message Body MPAN (M0) block (optional)

Field Description
DIP Validation

MPAN Core
Used to route messages to specific parties

(Secondary Addressing)

Distributor Id

The market-wide unique reference for the

distributor who is responsible for the distribution

network that a metering point is connected to.

© Elexon 2024 Page 39 of 76

Field Description
DIP Validation

GSP Group Id

Identifies the distinct grid supply point group

(physical region of the country) where the

metering point is located.

Check valid GSP Id

(enumerated values)

The M0 is an optional block

4.4.2.7 Message Body MPAN (M1) block (optional) (IF-019 & IF-020 only)

Field Description
DIP Validation

Principal MPAN
Used to route messages to specific parties

(Primary Addressing)

Distributor Id

The market-wide unique reference for the

distributor who is responsible for the distribution

network that a metering point is connected to.

GSP Group Id

Identifies the distinct grid supply point group

(physical region of the country) where the

metering point is located.

Check valid GSP Id

(enumerated values)

The M1 block is the M0 equivalent on interfaces IF-019 & IF-020 only.

4.4.2.8 Custom Block

The message body will be dependent which interface is being submitted. These definitions are not repeated in this
document, instead they can be found in the swagger definitions and MHHS-DES138-Interface Catalogue.

 DIP Processing (Level 1 Validation)

The purpose of the initial API checks is provide basic syntax checking of the message header to ascertain whether the
message is syntactically correct and can be processed further. A ‘handshake’ return message provides a reference
between the message sender’s unique reference and the DIP’s transaction Id.

The DIP will perform the following for each separate message received. On first error the DIP will abort the transaction
and return the corresponding status code and error messages.

• Validation of API key and establish Sender

• Ensure Interface Id is correct

• Schema validation checks are undertaken via the definitions described in the swagger. If schema validation
fails on a single message within a transaction then all messages within the transaction are rejected with a ‘400’
code and a MSG1001 message in the response. Some of the checks are undertaken here include:

o Check message structure, i.e. mandatory blocks are present for the corresponding interface and event
code.

o Check the message validation checks for the common blocks (see message validation above in 4.4.2
for details):

▪ Check the environment is set correctly

▪ Check Interface Id/Event Code pair is an allowable combination

▪ Check the message Schema version aligns (API enumeration defines allowable values)

• The following are undertaken outside the schema validation checks:

o Check the Sender Id (“logical” sender) is entitled to send message for the Event Channel for the given
role

© Elexon 2024 Page 40 of 76

o Check the DIP Connection Provider is entitled to send message on behalf of the “logical” sender for
the given role/channel

o Check Sender Unique Reference is formatted correctly and unique

• Generate a Transaction Id (see below)

• Generate a Transaction timestamp, i.e. record the current date/time (UTC)

• If the message channel is configured to generate a Workflow Correlation Id (see below)

• Generate service desk/audit links

• Write the Transaction Id, Transaction timestamp, Workflow correlation Id, status code, status message and
audit/service desk links to the response body

The DIP will be enforcing capitalisation checks on message ingress for path names and message structure. Data items
within messages are also case sensitive and the DIP will not convert between cases: data will pass through unaltered.
This follows OpenAPI standards. Enumeration checks undertaken by the DIP are case sensitive, e.g., for the
CommonBlock/S1/environment the term ‘PROD’ is accepted, whilst ‘prod’ or ‘Prod’ are rejected. A significant amount of
legacy data items where case is important pass through the DIP and hence the reason why these checks are applied).

Generate return code based on the results of the above checks for the all the messages received in the single
transaction.

The list of bespoke response codes are described in the swagger.

 Return Code and Response Body

4.4.4.1 Return Code

Each connection will result in a HTTP return code that will indicate the success or otherwise of the complete
transaction. The detailed list of expected behaviour and response codes, including any expected retry behaviour is
shown in the tables below (be it automatic or manually initiated). The HTTP codes and retry polices attempt to follow,
what is considered, standard industry practice. All HTTP response codes are also included in Swagger.

The table below introduces the ingress of messages to the DIP. The automated retry and retry behaviour columns

presents the suggested behaviour a participant’s system is expected to follow, but not mandated as they will have their

own mitigation policies already defined.

DIP Ingress ("Level 1" validation)

Code Messages Automated
Retry

Reason Action Retry Behaviour

2xx Successful

201 Messages
Created

 Messages successfully
received by DIP and passed
L1 validation (All messages
have a MSG0000 in the
corresponding response
block)

207 Some
Messages
Created

no Some or no messages are
created, i.e. some
messages have a MSG0000
message in the
corresponding response
block, others will have a
response code in the range
MSG1000 to 1012.

Reform failed messages and
resend in new transaction.

If problem persists, contact
DIP 1st line support

2xx Other 200
messages

 The DIP will only send 201
or 207 in the successful
receipt of messages

© Elexon 2024 Page 41 of 76

4xx Client Errors

400 Bad Request no Malformed messages or
HTTP Header content.

Reform message to align with
swagger definitions.

If submitting messages in-
batch submit in smaller
batches to establish problem
message. If problem persists
contact DIP 1st line support

401 Unauthorised
Error

no Issues related to Message
Signing Certificates, Header
problems or Account Issue
(this includes any errors
related to the X-API Key).

Ensure certificate validity;
check cert has not expired. If
problem persists, contact DIP
1st line support

after rectifying cert
issue reattempt
sending messages

403 Forbidden no Issues related to TLS
Certificates (including
authentication failures),
alongside other general
403 related issues i.e.,
could be IP blocking

Contact DIP 1st line support Retry after new
security measures
(cert/account) in
place

404 Not Found no Resource not found If problem persists, contact
DIP 1st line support

Resource could be
temporarily
unavailable, hence
assume a periodic
retry

405 Method Not
Allowed

no Requested method
unsupported

Contact DIP 1st line support

406 Not
Acceptable

no Requested method
unsupported

Contact DIP 1st line support

408 Request
Timeout

yes System timeout waiting for
resource

If problem persists, contact
DIP 1st line support

Adopt an automated
back-off and retry
algorithm for sending
messages.

413 Payload Too
Large

no Request is too large for
firewall/gateway

Reduce payload size where
possible, if not possible
contact support.

retry after dialogue
with 1st line support

429 Too Many
Requests

yes Rate limiting in force. Wait, if symptom persists
after cool-off period then
contact support

Adopt an automated
back-off and retry
algorithm for sending
messages.

4xx Other 400
messages

 The DIP will send any other
400 messages

Contact DIP 1st line support

5xx Server Errors

© Elexon 2024 Page 42 of 76

500 Internal
Server Error

yes

The DIP is aware that it has
encountered an error or is
otherwise incapable of
performing the request

Retry, but if problem persists
contact DIP 1st line support

Adopt an automated
back-off and retry
algorithm for sending
messages.

502 Bad Gateway yes

503 Service
Unavailable

yes

504 Gateway
Timeout

yes

505 HTTP Version
Not
Supported

no Contact support Contact DIP 1st line support

5xx Other 500
messages

 The DIP will not send any
other 500 messages

4.4.4.2 Response Body

The response uses the common Standard Response body:

Field Description

Transaction Id Unique DIP transaction Id

Sent timestamp DIP Receipt timestamp

Sender Unique Reference The original Sender Unique Reference

Sender ID DIP identified

Correlation Id Correlation ID relayed back (optional)

Recipient Id Recipient of the message

DCP Id DCP (optional)

Message Information on the message status

Help Extra help information

Service Ticket URL URL to SNOW ticket related to the message

The response body of the HTTP call will deliver the Sender a transaction ID and optionally a correlation ID against the
Sender's Unique Reference for each message.

If a HTTP Request contained a single IF message and this failed schema validation, then we might see a response
body that looks like the following example:

HTTP/1.1 207 Multi-status

Content-Type: application/sendEvent.api+json

{ "dipchannel": { "version": "1.0" },

© Elexon 2024 Page 43 of 76

{

 "messageArray": [

 {

 "transactionId": "",

 "senderUniqueReference": "",

 "correlationId": "",

 "sentTimestamp": "2022-03-21T19:05:00+00:00",

 "senderId": "",

 "recipientId": "",

 "DIPConnectionProviderId": null,

 "message": "MSG1001 – Schema Validation Failure",

 "help": "Message is malformed and failed to complete schema Validation ",

 "serviceTicketURL": "https://<baseURL>/nav_to.do?uri=<table name>.do?sys_id=-1%26sysparm_query=<field=value>"

 }

],

 "timestamp": "2022-03-21T19:05:00+00:00"

}

If a HTTP Request contained 2 IF messages and both passed schema and data validation, then we might see a
response body that looks like the following example:

HTTP/1.1 201 Created

Content-Type: application/sendEvent.api+json

{ "dipchannel": { "version": "1.0" },

{

 "messageArray": [

 {

 "transactionId": "T-IF-006-1234567890-SUP-20220401-1234CC0123456789",

 "senderUniqueReference": "S-IF-005-0345890082-SUP-20222313-12345687A",

 "correlationId": "CI-20220401-1234567890123abce123092",

 "sentTimestamp": "2022-03-21T19:05:00+00:00",

 "senderId": "10000000",

 "recipientId": "1009012345",

 "DIPConnectionProviderId": null,

 "message": "DIP0000 Message OK ",

 "help": "",

 "serviceTicketURL": "https://<baseURL>/nav_to.do?uri=<table name>.do?sys_id=-1%26sysparm_query=<field=value>"

 },

{

 "transactionId": "T-IF-006-1234567890-SUP-20220401-1234CC0123456123",

© Elexon 2024 Page 44 of 76

 "senderUniqueReference": "S-IF-005-0345890082-SUP-20222313-12345687b",

 "correlationId": NULL,

 "sentTimestamp": "2022-03-21T19:05:00+00:01",

 "senderId": "10000000",

 "recipientId": "1009012345",

 "DIPConnectionProviderId": null,

 "message": "Message OK ",

 "help": "",

 "serviceTicketURL": "https://<baseURL>/nav_to.do?uri=<table name>.do?sys_id=-1%26sysparm_query=<field=value>"

 }

],

 "timestamp": "2022-03-21T19:05:00+00:00"

}

If a HTTP Request contained 2 IF messages and both passed schema validation, but one failed data validation, then
we might see a response body that looks like the following example, returning a HTTP Code 207:

HTTP/1.1 207 Multi-status

Content-Type: application/sendEvent.api+json

{ "dipchannel": { "version": "1.0" },

{

 "messageArray": [

 {

 "transactionId": "T-IF-006-1234567890-SUP-20220401-1234CC0123456789",

 "senderUniqueReference": "S-IF-005-0345890082-SUP-20222313-12345687A",

 "correlationId": "CI-20220401-1234567890123abce123092",

 "sentTimestamp": "2022-03-21T19:05:00+00:00",

 "senderId": "10000000",

 "recipientId": "1009012345",

 "DIPConnectionProviderId": null,

 "message": "MSG0101 Application 101 error message",

 "help": "Sender Unique reference must take the format S - Interface Id - Participant Id - Role Id - Date - Sequence
(hex)/Participant Ref, e.g., ‘S-IF-005-0345890082-SUP-20222313-12345687a’",

 "serviceTicketURL": "https://<baseURL>/nav_to.do?uri=<table name>.do?sys_id=-1%26sysparm_query=<field=value>"

 },

{

 "transactionId": "T-IF-006-1234567890-SUP-20220401-1234CC0123456123",

 "senderUniqueReference": "S-IF-005-0345890082-SUP-20222313-12345687b",

 "correlationId": NULL,

 "sentTimestamp": "2022-03-21T19:05:00+00:01",

© Elexon 2024 Page 45 of 76

 "senderId": "10000000",

 "recipientId": "1009012345",

 "DIPConnectionProviderId": null,

 "message": "DIP0000 Message OK",

 "help": "",

 "serviceTicketURL": "https://<baseURL>/nav_to.do?uri=<table name>.do?sys_id=-1%26sysparm_query=<field=value>"

 }

],

 "timestamp": "2022-03-21T19:05:00+00:00"

}

4.5 Message Compression Handling

Message compression is used in the ECS reports & LDSO E-Bill Interfaces to ensure that the report size is within a
notional upper limit for the size of messages accepted by the DIP provider, as well as ECS reports received by
upstream & downstream participants. This message pattern for compressed payload involves using gzip to compress
the data, then base64 encode the data. The reverse is true for decompression.

This new pattern for compressed payloads will be introduced for the following reports:

• REP-002 Supplier report for DUoS – aggregated data

• REP-002A Embedded Network report for DUoS – aggregated data

• REP-002B LDSO report for DUoS – aggregated data

• REP-003 BM Unit Allocated Demand Volumes to Market Participants

• REP-003A Aggregated BM Unit Allocated Demand Volumes to Supplier

• REP-004 Supplier Deemed Take Report

• REP-006 Aggregated Uncorrected volumes by CCC to Market Participants

• REP-007 VAS Exception Report to Suppliers and BSCCo

• REP-008 MDS Exception Report to LDSOs

• REP-009 EMRS Report for Suppliers

• REP-900 LDSO – DUoS E-Bill

• REP-901 LDSO - Aggregated DUoS Charges

Messages currently comprise of two blocks – a CommonBlock and a CustomBlock. Compression and Decompression
are concerned with the data contained within the CustomBlock.

 Compression Steps

The following steps happen for compression as follows:

• The sender compresses the contents of the CustomBlock of the report using GZIP.

• The sender takes this compressed data and then BASE64 encodes the data.

• The sender takes this BASE64 encoded data and inserts this into the (empty) CustomBlock (P03 property as
below)

Any data / schema validation should be completed by the sender prior to data compression steps above. Message
processing continues as with other interfaces and the CommonBlock / HTTP Header is not changed. Message signing
will take place on message payload post data compression.

In the Swagger definition, the Custom Block for the ECS reports contains the following

• P03 property – to be used for the compressed payload following the instructions above

© Elexon 2024 Page 46 of 76

• Schema property - this is the uncompressed message to be used for validation. This will not be populated /
contain any data at runtime.

 Decompression Steps

The recipient will know that a specific message flow is compressed, and hence will need to decompress the payload.
The following steps happen for decompression as follows:

• The receiver BASE64 decodes the contents of the CustomBlock (P03 property as per previous section)

• The receiver takes this BASE64 data and decompresses using GZIP.

• The receiver will now have the decompressed payload for validation and onward processing.

Any data / schema validation should be completed by the receiver after the data compression steps above. Message
processing continues as with other interfaces and the CommonBlock / HTTP Header is not changed. Message signing
will take place on message payload pre data de-compression.

4.6 Receive Messages Webhook

A Market Participant’s webhook can either be configured within the DIP UI, or via the API call to register the webhook -
https:/api.{environmment}.energydataintegrationplatform.co.uk/{version}/dip-channel/{id}/pubconfig/reciepient-id}).
Either can be used to register the webhook that will be used to relay publication events/messages from the DIP to the
corresponding message recipient.

The latest version of the full Open API definition can be found here
https://app.swaggerhub.com/apis/MHHSPROGRAMME.

The API call can either register a new webhook, remove or replace an existing webhook.

The webhook for each message channel (publication) needs to be registered separately. The receiving Participant has
the option of defining multiple callbacks (one for each publication) or a single callback for the receipt of all messages
(which would need to be registered on each channel). It is the receiving Participants responsibility to ensure that all
publications they are due to receive are covered by all the callbacks registered.

The messages within a single callback can have mixed MPANs.

The return code and response body of the callback API will provide the receiving Participant with an auditable trace on
the success of sending the messages by the DIP.

If the webhook request has originated from a DIP Connection Provider the DIP will check that the DIP Connection
Provider is authorised to receive messages on behalf of the logical recipient.

 Path Parameters

The API has the following path parameters:

• The message channel Id the corresponding webhook needs to service, eg. IF-001

• The DIP ID of the message recipient, eg. 1001012345

 Callback Request structure

The callback request will have the following properties:

• the URL for the callback. The URL should not specify a port number as all comms are through standard http
ports, i.e. 443 for https.

• the maximum number of messages the recipient can receive in a single transaction

• the maximum payload size - the payload size sent in the callback (from the DIP to the MP) will not exceed this
limit. This limit is ignored (by the DIP) if a single message cannot be transmitted.

https://app.swaggerhub.com/apis/MHHSPROGRAMME

© Elexon 2024 Page 47 of 76

A worked example can be seen below, that shows a different number of messages / message sizing scenarios and

how the DIP combines these messages for a market participant to process.

 DIP Responsibilities

On sending a set of events/messages the DIP will undertake the following:

Message Construction

The DIP will augment the original message with the added information detailed below in section 4.6.4.

API Call

The DIP will call the API declared in the callback. Initially the maximum number of records sent in a single call will be
set to 50,000, however, this value will be under review, or the maximum number specified in the callback request. Only
messages on the same messages channels will be sent in the same API call. Also, the payload size will not exceed the
size specified in the call back request: the DIP will collate all outstanding messages on the channel and if there is a
message that exceeds the limit requested, then that message will be sent in the next transaction.

API Response

The DIP will need to process the callback response. The HTTP return code will provide the return for the whole
transaction and needs to be considered with the response body as it will provide the details for the acceptance or
otherwise for each message (see below for response code).

Back Off and Retry

The DIP will adopt a retry with exponential backoff approach (up to a maximum wait time) and introduce additional
“circuit breakers” to ensure efficient handling of broken connections to Market Participants.

 Message Structure

4.6.4.1 Common Block

The common block described above in the sendEvents API will be augmented with the D0 block which is added to the

message by the DIP.

4.6.4.2 Interface (S0) block (Mandatory)

Contains specific information regarding the message channel of the message.

Field Description Validation

Message Interface ID The interface Id Check valid interface Id

Schema Version Version of the schema used in the message
Check version is valid
for the environment

Event Code Used to route messages to specific parties
Check Interface Id/Event

Code pair is valid

4.6.4.3 Sender (S1) block (Mandatory)

Contains Sender specific message information.

© Elexon 2024 Page 48 of 76

Field Description Validation

Environment
The environment indicator, i.e. PROD, PREPROD,

SIT.

Check environment is
correct

Sub Text
Optional field used in testing to uniquely identify a set

of messages

n/a

Sender Unique Reference

Unique identifier for the event/message provided by

the message Sender. Setting is this value is described

below.

Check format meets

specification

Sent Date/time Date/time (UTC) message was sent Check valid/date

Sender ID The Market Participant who sent the message. Check valid participant

Sender Participant Role The capacity in which the message was sent

DIP Connection Provider ID If message sent by a nominated third-party

4.6.4.4 DIP (D0) block (Mandatory)

The DIP adds to the D0 block to the common block.

Field Description

Transaction Id Unique DIP transaction Id -

Transaction timestamp DIP Receipt timestamp

Publication Id Publication ID

DIP Correlation Id

Provides unique identification for a specific

workflow instance. Only set for those channels

were a correlation ID is required – see section

3.4

Replay Indicator
If set, then message has arrived through a

replay request rather than a standard message

Service Ticket URL URL to create/view appropriate service ticket

4.6.4.5 Response (R0) block (optional)

Sender populated, dependent on message channel (see MHHSP Interfaces Catalogue)

Field Description Recipient Validation

Response Code Response Code

Check response code

is valid for the

Interface

Response Message Status/Error Message

4.6.4.6 MPAN (M0) block (optional)

Field Description Recipient Validation

MPAN Core
Used to route messages to specific parties

(Secondary Addressing)

Distributor Id

The market-wide unique reference for the

distributor who is responsible for the

distribution network that a metering point is

connected to.

© Elexon 2024 Page 49 of 76

Field Description Recipient Validation

GSP Group Id

Identifies the distinct grid supply point group

(physical region of the country) where the

metering point is located.

Check valid GSP Id

(enumerated values)

4.6.4.7 Custom Block

The message body will be dependent which interface is being submitted. These definitions are not repeated in this
document, instead they can be found in the swagger definitions and MHHSP Interfaces Catalogue.

 Recipient Responsibilities

On receipt of a batch of messages the Recipient will need to validate those messages. Validation is split into two
phases: Synchronous (Level 3) and Asynchronous (Level 4) validation. Where validation occurs, either at L3 or L4, is
down to the discretion of the Recipient. It is recognised that different Recipients will design their interfacing systems
differently, hence, the responses can either be synchronous (L3) or asynchronous (L4).

The expectation is that the Recipient will undertake some initial validation checks and probably employ schema
validation checks on their own gateway. At this point the transaction has not been desearialised and individual
messages not recognised within the payload; hence if an error is encountered then the whole transaction is rejected
with at 400 response code. At this juncture no transaction Id would be quoted back in the response.

Once the initial checks have been undertaken and the individual messages identified then the processing and reporting
can be undertaken at message level. These subsequent checks are more likely to be L4 checks.

The orchestration is described further in section 5.1. Validation checks that recipient systems will need to undertake
are described in the MHHSP Interfaces Catalogue (DES 138).

If the Recipient is receiving the event/message through a replay request then the subsequent downstream processing
and subsequent reply needs to be cognisant that the event/message may have already been processed.

 Callback Response

The callback response contains the outcome of the Level 3 validation undertaken by the recipient, the return code the

result of the overall transaction and the response body details of the individual messages/events.

4.6.6.1 Return Code

Each connection will result in a HTTP return code that will indicate the success or otherwise of the complete
transaction. The full list of response codes is available in the swagger definition. The table introduces the egress of
messages to the DIP. The automated retry and retry behaviour columns presents the pattern of behaviour that the DIP
will undertake in the event of an error code.

DIP Egress; i.e. webhook ("Level 3" validation)

Code Messages Retry Reason Action Retry Behaviour Notify
Sender via
a status
Message

2xx Successful

201 Messages
Created

 Messages successfully received by
Recipient and passed L3 validation.

207 Some
Messages
Created

No Some messages successfully received
by Recipient and passed L3 validation.

The DIP will
automatically
send status
messages for

 Yes; those
messages
failing
validation

© Elexon 2024 Page 50 of 76

those messages
failing validation

2xx Other 200
messages

 Participant systems should only send
201 or 207 messages

4xx Client Errors

400 Bad Request no Malformed messages or HTTP Header
content.

The DIP will
automatically
send status
messages for
those messages
failing validation

 Yes

401 Unauthorised
Error

no Issues related to Message Signing
Certificates, Header problems or
Account Issue (this includes any errors
related to the X-API Key).

Ensure
certificate
validity; check
cert has not
expired. If
problem
persists contact
DIP 1st line
support

If participant believes
issue is fixed then
request messages to
be resent via DIP
replay

No

403 Forbidden no Issues related to TLS Certificates
(including authentication failures),
alongside other general 403 related
issues i.e., could be IP blocking

Contact DIP 1st
line support

If participant believes
issue is fixed then
request messages to
be resent via DIP
replay

No

404 Not Found no Resource not found Resource could
be temporarily
unavailable,
hence assume a
periodic retry. If
problem
persists contact
DIP 1st line
support

If participant believes
issue is fixed then
request messages to
be resent via DIP
replay

No

405 Method Not
Allowed

no Requested method unsupported Assume
significant issue
with participant
system. Contact
DIP 1st line
support

If participant believes
issue is fixed then
request messages to
be resent via DIP
replay

Yes

406 Not
Acceptable

no Requested method unsupported Assume
significant issue
with participant
system. Contact
DIP 1st line
support

If participant believes
issue is fixed then
request messages to
be resent via DIP
replay

Yes

408 Request
Timeout

yes System timeout waiting for resource The DIP will adopt a
retry with an
exponential back-off
whilst attempts to
rectify the issue are
made

No

© Elexon 2024 Page 51 of 76

413 Payload Too
Large

no Request is too large for
firewall/gateway

Participant can
reduce size of
webhook
callback via
API/portal. If
still
unsuccessful
contact 1st line
DIP support

If participant believes
issue is fixed then
request messages to
be resent via DIP
replay

No

429 Too Many
Requests

yes Rate limiting in force. Assumption is
that the
participant
system has
implemented
some rate
limiting on their
gateway

The DIP will adopt a
retry with an
exponential back-off

No

4xx Other 400
messages

 The DIP is not expecting to receive
any other 400 message

Contact DIP 1st
line support

5xx Server Errors

500 Internal
Server Error

yes

The DIP is aware that it has
encountered an error with the
Participant system.

Contact DIP 1st
line support

The DIP will adopt a
retry with an
exponential back-off
whilst attempts to
rectify the issue are
made

No

502 Bad Gateway yes

503 Service
Unavailable

yes

504 Gateway
Timeout

yes

505 HTTP Version
Not
Supported

no Contact support

5xx Other 500
messages

 The DIP is not expecting to receive
any other 500 message

4.6.6.2 Response Body

The response uses the common Standard Response body:

Field Description

Transaction Id Unique DIP transaction Id

Sent

timestamp
DIP Receipt timestamp

© Elexon 2024 Page 52 of 76

Field Description

Sender

Unique

Reference
The original Sender Unique Reference

Sender ID The Sender of this message, i.e. the recipient of the incoming message.

Correlation Id Correlation ID relayed back (optional)

Recipient Id
Recipient of the message, i.e. Recipient of this message most likely to be the

Sender of the corresponding incoming message. If a generic DIP issue, then the
recipient is the DIP

DCP Id DCP (optional – used if the Sender uses a DCP)

Message Information on the message status

Help Extra help information

Service Ticket

URL
URL to SNOW ticket related to the message

Where a field is not written/available/optional, then a null value needs to be written.

4.6.6.3 Response Body

The response body of the HTTP call will deliver a response back to DIP indicating the success or otherwise of
processing each message received.

In the example below, two messages are received, the first accepted and the second rejected:

HTTP/1.1 207 Multi-status

Content-Type: application/recieveEventCallback+json

{ "recieveEventCallback": { "version": "1.0" },

"events": [

{

{

 "transactionId": "T-IF-006-1234567890-SUPP-20220401-1234CC",

 "sentTimestamp": "2022-03-21T19:05:00+00:00",

 "senderId": "1009012345",

 "recipientId": "1009012346",

 "message": "RCP0000 ok ",

 "serviceTicketURL": "https://<baseURL>/nav_to.do?uri=<table name>.do?sys_id=-1%26sysparm_query=<field=value>"

 },

{

 "transactionId": "T-IF-006-1234567890-SUPP-20220401-1234DE",

 "sentTimestamp": "2022-03-21T19:05:01+00:00",

 "senderId": "1009012345",

 "recipientId": "1009012346",

 "message": " REG1020 Meter Install Date [DI-057] cannot take place in the future"

 "help": " Meter Install Date [DI-057] cannot take place in the future ",

 "serviceTicketURL": "https://<baseURL>/nav_to.do?uri=<table name>.do?sys_id=-1%26sysparm_query=<field=value>"

© Elexon 2024 Page 53 of 76

 }

]

}

4.7 Send Status Messages API

The Send Status Messages API is used to submit status messages, i.e. the results of level 4 validation, to the DIP. The
latest version of the full Open API definition can be found here https://app.swaggerhub.com/apis/MHHSPROGRAMME

The sending Participant can send an array of status messages (configurable – initial limit set to 50,000).

The return code and response body provides the sending Participant with an auditable trace on the success of the
receipt of the messages by the DIP.

 Status Message Structure

The format of the incoming message has the structure:

Field Description
Mandatory/

Optional

Transaction Id Transaction Id of the original message the DIP M

Sender Unique Reference Sender Unique Reference of the original message O

Correlation Id Correlation Id of the original messages (where available) O

Sent Timestamp Sent timestamp of the Status Message M

Sender Id Logical Sender of the Status message M

Recipient Id Recipient of the Status message, which will in most cases be the
Sender of the original message

M

DIP Connection Provider Id Physical sender of message (where different to Sender id) O

Message Information regarding subject of message M

Service Ticket URL URL to create/view appropriate service ticket O

Help Help text O

4.8 Receive Status Messages Webhook

The Receive Status Messages API is used to receive status messages from the DIP that either been produced by the
DIP, or the DIP is passing through from another Participant. The latest full Open API definition can be found here

https://app.swaggerhub.com/apis/MHHSPROGRAMME

The Market Participant/DCP will need to register the webhook for the messages sent to a corresponding DIP Id that is
under its control.

The Participant webhook will be able to receive an array of status messages (up to 50,000).

The return code and response body provides the sending Participant with an auditable trace on the success of the

receipt of the messages by the DIP.

The message structure is the same as defined in section 4.7.1.

https://app.swaggerhub.com/apis/MHHSPROGRAMME

© Elexon 2024 Page 54 of 76

© Elexon 2024 Page 55 of 76

4.9 Replay Events

Where Market Participants have lost any messages (following successful delivery previously), or to support Market
Participants to recover from a system failure (alongside several other scenarios), the Replay Events functionality will
enable Market Participants to retrieve messages from the DIP archive.

The latest version of the full Open API definition can be found here:
https://app.swaggerhub.com/apis/MHHSPROGRAMME.

Two different APIs are available: Replay API and Requeue API. The Replay API will return the messages directly from
the API call, whilst the Requeue API will place the messages on the queue to be pulled by the corresponding webhook.

The furthest a query can retrieve data is dependent upon the retention time set with each message channel (the default
retention is 2 years).

The Participant can make a single request to return an array of events (50,000). The message will contain data i.e.,
timestamps as per the original submission.

The original Recipient DIP Id needs to be specified as the DIP will need to ascertain which messages the participant is

able to replay. This Replay Events functionality will also be available via the DIP Portal to manually request a replay.

 Query Parameters

The Replay Events query parameters are:

• Message Channel

• Message Recipient DIP ID

https://app.swaggerhub.com/apis/MHHSPROGRAMME

© Elexon 2024 Page 56 of 76

Message request object contains::

• Event Code (optional)

• MPAN

• Transaction IDs – array of message Transaction Ids to replay, or

• Date/time from – transaction time from which the first message needs to be replayed.

• Date/time to (optional) – transaction time message to be replayed

• Version – message version (optional)

The replayed message will have the same structure as the message received via the webhook, hence in addition to the

message body and Sender message blocks (P0, M0) (sender) and message will also have the added the amended D0

block.

There will be two methods by which the Event Replay facility can be initiated:

• Through the UI interface on the DIP

• Through an API Call

As well as being delivered via a separate API, the event replay will deliver the message under a new transaction
wrapper with a Transaction ID and Correlation ID (with a reply prefix) so that the event/message are identified as a
replayed, and hence downstream processes are not triggered. The initial message transaction wrapper will also be
sent. Only messages the Participant is entitled to view will be sent.

Participants need to be aware where messages are replayed from archive that message payloads are replayed in the

schema version that they were originally submitted in, i.e. the messages are not “uplifted” to the current live format

when replayed. Hence, participants requiring full replay facilities will need message gateways and software that have

multi-version support for message ingress during replay. Also, please see section 8.5 below on version control.

5 Message Choreography

5.1 Simple Message Exchange

The following diagrams describe the 6 different scenarios that can occur on a simple message exchange between a
single DIP Participant service and the DIP and include all the different levels of validation.

For diagram clarity, the step showing message being written to the DIP archive are not shown on any of the diagram
below.

The diagrams only show a simple scenario where a single message is exchanged between Sender and the DIP, and

then relayed by the DIP to recipient. Where multiple messages are exchanged and a mixed response is described in

section 5.3

 Standard Exchange

© Elexon 2024 Page 57 of 76

DIP Internals

Receive

Messages

Webhook

Recipient

Callback

Recipient

Task

4. Receive Messages webhook
5. Run worker task

(synchronous)

7. Response with HTTP 201 code, { transactionId : T-005-
1234567890123-SUPP-20220401-1234CC ,
 sentTimestamp :
 2021-12-25T06:06:13.45",
 message , DIP0000 - Ok
..}

8. Event/message removed

from Q

6. Worker task status

Happy Path

Send

Messages API
Sender Task

1a. Response with HTTP 201 return code, response body

{
 senderUniqueReference :
 S-005-03458900823-SUPP-20222313-12345687A ,

 transactionId : T-005-1234567890123-SUPP-20220401-
1234CC ,

 sentTimestamp : 2021-12-25T06:06:12.45",
 message , DIP0000 - ok
 .etc
}

1. Send Messages API called

2. Initial validation successful;

Message on internal Q 3. Relay message to target

Level 1
Level 2

Level 3
Level 4

Figure 5 – Standard Exchange

In this exchange the message recipient will only receive the initial synchronous acknowledgement from the DIP (Level

1 validation), there is no acknowledgement from the recipient of the message back to the Sender. However, there is an

acknowledgement from the Recipient to the DIP (Level 3 validation) for the message but this is not relayed back to the

Sender. This follows the principle that only processing and data errors are returned to the Sender, and successful

processing is not routinely reported.

Both synchronous responses, initially by the DIP on the initial API call (steps 1&1a above) and the webhook API call

back (steps 4&7) are logged in the DIP to meet the audit requirements.

Message auditing logging is not shown. The audit trail is available to sender via a DIP report.

 Level 1 validation - DIP Synchronous rejection

In the scenario where a message is synchronously rejected by the DIP, in the example below the message has been

rejected as the Sender does not have the privilege to send messages on Interface IF-006, the response body clearly

states the sender is not allowed to send messages on IF-006.

© Elexon 2024 Page 58 of 76

Sender Synchronous Error

 Send

Messages

API

Sender Task

1. Send Messages API call

1a. Response with HTTP 403 return code,

response body

{
 senderUniqueReference :
 S-005-03458900823-SUPP-20222313-12345687A

 transactionId : T-006-1234567890-SUPP-20220401-
1234CC ,

 sentTimestamp :
 2021-12-25T06:06:12.45",

 message , DIP1003 - Participant not authorised to send
messages on IF-006
 ..

}

Figure 6 – Level 1 DIP Synchronous Error

© Elexon 2024 Page 59 of 76

 Level 2 validation - DIP Asynchronous rejection

Receive

Message

webhook

Sender

callback

Another

Sender Task

4. Receive StatusMessage

callback

5. Take Action

4a. Send message, {

 transactionId : T-005-1234567890123-SUPP-20220401-1234CC ,
 sentTimestamp : 2021-12-25T06:06:13.45",
 message : DIP1001 - Duplicate message detected ,
 help : Message with senderUniqueRef S-005-03458900823-SUPP-
20222313-12345687A already sent
... }

Asynchronous Error Message

 Send

Messages

API

Sender Task

1a. Response with HTTP 201 return
code and response body (see above)

1.Event occurs

2. Message received 3. Message failed

validation

DIP

Processing

4b. Response with HTTP 201 return code, response body

{

 transactionId : T-005-1234567890123-SUPP-20220401-1234CC ,

 sentTimestamp : 2021-12-25T06:06:12.45",

 message , DIP0000 - ok ...

}

Figure 7 Level 2- DIP Asynchronous Error

After the initial successful receipt of the message the DIP encounters an error with a Sender’s message, in this

example the DIP finds the signature invalid. The DIP informs the Participant of the problem, a message is sent back via

the Status Message webhook, with return message containing the Transaction Id, an error code and a description of

problem. The webhook call back responds that the status message has been received and the sender will need to take

some action accordingly.

© Elexon 2024 Page 60 of 76

 Level 3 response - Recipient Synchronous Error (with retry)

DIP relay
Receive

Messages

webhook

Recipient

callback

4. HTTP request with

 payload

6. Event/message left on Q for

later retry

C. System Error

 Send

Messages API
Sender Task

1. Event Occurs

2. Message on Q

3. Relay message to target

1a. Response with HTTP 201 return code, response body

{

 senderUniqueReference :

 S-005-03458900823-106-20222313-12345687A

 transactionId : T-005-1234567890123-SUPP-20220401-1234CC ,

 transactionTimestamp : 2021-12-25T06:06:12.45",

 message , DIP0000 - Ok

...

}

5. Response with HTTP 429 code

Figure 8 – Level 3 - Recipient Synchronous Error (retry)

Recipient Synchronous Error with retry where the response from the recipient webhook indicates a system error, e.g.

with an HTTP 429 Too Many Requests response. The message has not been consumed and is retained in the queue

for later processing. The DIP will have the logic to attempt to resend the message after a timeout period.

If the message is still not sent after a maximum retry period has elapsed then the message is moved to the Dead Letter

Queue (DLQ) – see section 5.1.9.

© Elexon 2024 Page 61 of 76

 Level 3 validation - Recipient Synchronous Response (no-retry)

4. HTTP request with

 payload
5. Run worker task

7. Response with HTTP 207

code

6. Worker task

status (bad data)

8. Event/message removed

from Q

DIP

Processing

Receive

Messages

webhook

Recipient

callback

Recipient

Task

Sender

Status

Message

Callback

Data Validation Error (Synchronous validation)

Send

Messages

API

Sender Task

1. Event Occurs

2. Message on Q

1a. Response with

HTTP 201 code

3. Relay message to target

Status

Messages

webhook

9.Return details of error

to Sender

10. Status

Message

indicating error

Figure 9 - Recipient synchronous Error (no-retry)

Recipient Synchronous Error with no-retry is the case where the recipient’s system rejects the message via the

webhook call, i.e. the message has been consumed and rejected. In this scenario, the webhook reports a mixed/error

return, and the DIP relays the error received from the Receive Messages webhook back via the Status Messages

webhook to the originating party and the message is removed from the outbound queue.

© Elexon 2024 Page 62 of 76

 Level 4 validation - Recipient Validation Response (Asynchronous)

In this scenario the recipient of the message discovers an error with the message and needs to report the response

back to the Sender. i.e. the recipient’s system can consume the data, however, there is an inconsistency with the data

which is not reported on the initial call back. The initial message exchange is identical to the standard use case

described above (see 5.1.1), however there is an additional message sent back via the Send Status Message API.

3. Relay message to target
4. HTTP request with

 payload
5. Run worker task

7a. Response with HTTP 200

code

6a. Worker task

status (data ok)

8a. Event/message removed

from Q

Data/Validation Error (Asynchronous)

6b. Raise new status

message

DIP

Processing

Receive

Messages

webhook

Recipient

callback

Recipient

Receive

Data

DIP

message

relay

Receive

Status

Message

webhook

Sender

receiveStatus

message

callback

Status

Message API

7b. DIP receive status

message

9b. Sender receive

status message

8b. DIP send status

message

Etc, etc

Send

Message API
Sender Task

1. Event Occurs

2. Message on Q

Triggers d/s

processing

asynchronously

Recipient

Proceess

Data

Data anomoly

detected

1a. Response with HTTP 201 return code, response body

{

 senderUniqueReference :
 S-005-03458900823-SUPP-20222313-12345687A

 transactionId : T-005-1234567890123-SUPP-20220401-
1234CC ,

 transactionTimestamp : 2021-12-25T06:06:12.45",
 message , DIP0000 - ok

..

}

Figure 10 - Recipient Data Error - Asynchronous reporting

© Elexon 2024 Page 63 of 76

 Consumption Replay

Message Channels 15 & 16 are used for the replay of historic consumption data and do not follow the standard design

pattern of the other message channels. Channels 15 &16 perform a request / response type of exchange where the

initial message via Interface 15 is a request for historic consumption data which the DIP received and processes. The

DIP will search the message archive for the requested data and send the corresponding messages back via

Publication 16.

This transaction is only available to Advanced Data Services. All consumption records (IF-021 / IF-013)

submitted/received by previous Advanced Data Services for a period of four months prior to SSD will be replayed.

The rationale for splitting into two channels is due to the different formats of the incoming request and the outgoing

messages containing consumption data.

© Elexon 2024 Page 64 of 76

 Pattern ‘B’ Message flow

DIP Internal

Send

Publication

Message

webhook

Recipient

Publication

WebHook

Recipient

Task

6a. Webhook PUB-047

6b. Response with HTTP Ok

1a. Store Message

payload API

A. Happy Path

 Send

Message API

Message

Sender

2b. Response with

HTTP 201 code

2a. Send IF-047 Message

3. Receive Message

Payload

Ingress Store

Payload

Retrieval

API

8a. Payload Retrieval

Request

4. Relocate Payload

8b. Recieve Payload

1b. Response with

HTTP 200 code

Incoming Store

Outgoing Store

5. Call webhooks

7. Recipient Internal

trigger

Figure 11 - Message Pattern 'B' Orchestration

In the DIP Functional Specification (Reference MHHSP-DIP001-Functional Specification v2.0, 6 May 2022) the concept
of message pattern ‘A’ and Message Pattern ‘B’ was introduced. Pattern ‘B’ is an extension of pattern ‘A’ where the
payload is initially written to a URI, and then the intended recipients of the payload are sent a message via the IF-047
interface to communicate the location of the payload to Market Participants. There are two distinct variants for Pattern
‘B’: DIP hosted payloads (where access controls are required) and public payloads (no access controls required).

The orchestration sequence for Pattern B (DIP hosted) is presented above.

1. Sending MP copies payload to storage account on DIP; response message details the location of the payload

2. Sending MP writes an IF-047 message to the DIP with the details of the uploaded payload.

3. DIP receives message

4. DIP moves payload to destination folders for consumption by receivers

5. DIP calls recipient callback with PUB-047 message

6. Recipient webhook receives PUB-47 message and issues acknowledgment

7. Recipient internal trigger activate payload retrieval API

8. Receiving MP retrieves payload from storage account

With the public payload version, the first step is omitted, and it’s the responsibility of the Sending MP to host the
message payload and provide the required access.

© Elexon 2024 Page 65 of 76

Market Participants will also query the data store (identified by a URI within the message contents) to see current and
past payloads. This will also enable anonymous access to the data store, and a facility to download current and past
payloads is also available.

The ingress and egress files will be held as blobs within Azure storage accounts. Authorisation to the accounts will be
achieved via the use of the same client certificates that are used for message exchange. The transfer of files from
Market Participant systems to the DIP storage account can be achieved via the use of the azcopy utility.

© Elexon 2024 Page 66 of 76

 Recipient Timeout & Dead-Letter Queue Handling

DIP Internal

Receive

Messages

API

Recipient

WebHook

4. HTTP request with

 payload

5. NACK

6. Message left on Q for later

retry; eventually moved to

DLQ if not picked up

B. Timeout

Send

Messages

API

Sender Task

1. Event Occurs

2. Message on Q

3. Relay message to target

1a. Response with HTTP 201 return code, response body

{

 senderUniqueReference :

 S-005-03458900823-106-20222313-12345687A

 transactionId : T-005-1234567890123-106-20220401-1234CC ,

 sentTimestamp :

 2021-12-25T06:06:12.45",

 message , DIP0000 - ok

...

}

Status

Message

Webhook

Sender

Status

Message

callback

7. Timeout occurs, message

moved to DLQ and Sender

notified

8. Sender gets notified of

message on DLQ

Figure 12 – Recipient Timeout

Timeout – above shows the case where there has been no response from the recipient webhook at the call back times

out. The message is retained in the queue for later processing. The DIP will have the logic to attempt to resend the

message after a timeout period.

Once a message/event has not be retrieved by a Recipient the DIP will write the message to a dead letter queue

(DLQ). Messages on the DLQ will be reported back to the message's sender via the Status Message webhook (section

4.8.)

© Elexon 2024 Page 67 of 76

5.2 Error Handling & Message Distribution Patterns

This section describes the different message distribution patterns together with some general principles in message

validation and how potential discrepancies between recipients are resolved. This is just an initial view, more details on

this will be provided in the DIP Operational Handbook once the detailed design has progressed.

The majority of the DIP message flows originate from either the Registration system(s) or the ECS systems (MDD,

LSS, ISD) and the principle adopted is that these systems are considered to be the “System of Truth” in the message

exchanges, and hence discrepancies are raised by DIP Participants that either send or receive messages to/from

these services.

Most of message exchanges via the DIP do not involve a simple message being sent from a sender to a single

recipient. Depending on the addressing requirements of each message channel (see MHHS-E2E003-Physical

Interface Specifications for the requirements for each interface) messages are often sent to multiple recipients. This

asks the question regarding message validation and what happens in the event of a discrepancy between message

recipients.

All the patterns assume that the original message has been consumed by one or more recipients, and the recipient has

sent a Status Message back to the Sender via the DIP detailing the issue with the data.

 Pattern Description Interfaces Validation resolution

MD#1 Registration In A single DIP Participant sends a

message solely to the Registration

Service

IF-005, IF-007,

IF-025, IF-031,

IF-034, IF-038

Registration will send validation errors

back to the Sender. Sender will aim to

correct data and resend; if Sender

considers the data to be correct then raise

support ticket on Registration.

MD#2 Registration

Out

The registration service sends out a

broadcast message, typically a

confirmed update from the

Registration system, to many DIP

Participants

IF-001, IF-002,

IF-006, IF-008,

IF-009, IF-018,

IF-026, IF-032,

IF-033, IF-035,

IF-036, IF-037,

IF-039, IF-043,

IF-044, IF-045,

IF-050

Registration data is considered correct. If

participant interface raises an error, they

will need to track the error via the DIP.

Check if other DIP Participants have

raised an error on the message. If sender

still considers there is an issue with the

data then raise a support ticket on

Registration (or update existing ticket)

MD#3 ECS Out

(LSS, MDS,

ISD, VAS)

One of the ECS services (LSS, MDS,

ISD, VAS) sends out a broadcast

message to multiple DIP Participants

IF-013, IF-014,

IF-022, IF-023,

IF-040, IF-047

LSS, MDS, VAS, ISD data are considered

correct. If participant raises an error, they

will need to track the error via the DIP.

Check if other DIP Participants have

raised an error on the message. If sender

still considers there is an issue with the

data then raise a support ticket on

LSS/MDS/VAS/ISD (or update existing

ticket)

MD#4 IF-021 The Half Hourly consumption data

interface is considered separately

IF-021 With IF-021 the default position is that the

responsibility will be for the SDS to send

correct data. Hence, if an error message

is received from MDS then the SDS must

take initial responsibility to trace the issue.

If IF-021 is rejected by another party than

the SDS then the onus is on that party to

pursue any action, i.e. raise a support

ticket, noting they should establish

whether the MDS successfully received

the same data via the DIP audit trail.

© Elexon 2024 Page 68 of 76

MD#5 Point-to-Point Messages between two single DIP

Participants

IF-024, IF-027,

IF-028, IF-004

With point-to-point interfaces the onus will

again be on the recipient to raise any

issues with errors detected in the

message exchange.

MD#6 Request Participant sends a data request to

the DIP (normal BAU, not event

replay)

IF-015 In the event of an error being returned by

the DIP, the onus is on the Sender to

raise a support ticket if they see no issues

with the original request.

MD#6 Response Participant receives a data request to

the DIP (normal BAU, not event

replay)

IF-016 In the event of an error being returned by

the DIP, the onus is on the Sender to

raise a support ticket if they see no issues

with the original request.

5.3 Batch Message Handling

For ease of understanding the examples in section 5.1 describe the processing of individual messages rather than a

group of messages. In practice participants will send batches of messages rather than individual messages via the

Send Messages API and the callback from receive events webhook will routinely send multiple messages within a

single HTTP transaction. In this scenario the course of individual messages will follow the sequences above, however,

as each connection can only result in a single HTTP return code that will indicate the success or otherwise of the

complete transaction and this be reflected as follows:

Response Meaning

201 – Created All messages created

207 – Multi status Some messages created; see response body for details

4xx/5xx See swagger definitions

Figure 13 - HTTP Response Codes for Batch Messages processing

In addition the DIP will undertake schema validation on the whole batch of messages rather than individual messages,

and hence, if there is a validation issue with a single message in a group then the whole transaction will fail and no

messages are accepted. The DIP will respond with a 403 response and a MSG1001 code.

5.4 Workflow Message Handling

The message flows described above in section 5.1 are for a single instance of a message over an interface/publication

along with acceptance/rejection paths for that messages. For the workflows, described in section 3.4, an instance of

each workflow will compromise of a series of messages with the receipt of one message triggering a processing step

that will result in subsequent message. In order to link a single thread of a workflow process, the Workflow correlation

Id is used.

The Workflow correlation Id is generated by the DIP on receipt of the first message in a workflow sequence. The DIP

will configured to generate Workflow Ids for specific interfaces. Recipients of the initial message, and any further

recipients of messages in the workflow sequence, will have the responsibility of transcribing the Workflow correlation Id

from the Transaction block from the received message to the transaction block in any subsequent return messages.

Participants will also be able to track specific threads of workflows by tracking Correlation Id and MPAN via the DIP

audit reports.

This is best explained with the aid of an example for BP009 – Change of Meter.

BP09 consists of two message flows; IF005 - and IF006. IF005 is the initial message, and IF-006 is the response.

DIP Internals

Receive

Messages

Webhook

Recipient

Callback

Recipient

Validation

Task

4. receiveEvents webhook

5. Run worker task – initial

validation (synchronous)

4a. Response with HTTP 201 code,
{ transactionId : T-005-1234567890123-SUPP-20220401-1234CC ,
 sentTimesamp : 2021-12-25T06:06:13.45",
 message : DIP0000- Ok }

6. trigger Recipient

Response task

BP009

Send

Messages API
Sender Task

1a. Response with HTTP 201 return code, response body
{
 senderUniqueReference

: S-005-03458900823-SUPP-20222313-12345687A
 transactionId : T-005-1234567890123-SUPP-20220401-1234CC ,
 correlationId

: CI-BP09-20220401-1234567890123"
 sentTimestamp : 2021-12-25T06:06:12.45",
 message : DIP0000 - Ok
}

1. sendEvents API called

2. Initial validation successful;

Message on internal Q 3. Relay message to target

Message sent with details:
{
 interfaceId : IF-006"
 senderUniqueRefernce

: S-006-09958907723-ABC-20222313-98765432
 correlationId : CI-BP09-20220401-1234567890123"
}

Message sent with details with DIP added fields:
{
 interfaceId

: IF-005"
 senderUniqueRef

: S-005-03458900823-106-20222313-12345687A
 correlationId

: CI-BP09-20220401-1234567890123"
 transactionId : T-005-1234567890123-106-20220401-1234CC ,
 transactionTimestamp : 2022-04-01T06:06:12.45"
}

Recipient

Response

Task

DIP Internals
receiveEvents

Webhook

sendEvents

API

Recipient

Callback

Recipient

Validation

Task

Message #1 - IF005 Message#2- IF006

Message sent with details with DIP added fields:
{
 interfaceId

: IF-005"
 senderUniqueRef

: S-005-03458900823-106-20222313-12345687A
}

Message sent with details with added DIP fields
{
 interfaceId : IF-006"
 senderUniqueRefernce

: S-006-09958907723-ABC-20222313-98765432
 correlationId : CI-BP09-20220401-1234567890123"
 transactionId : T-006-1234567890123-106-20220401-1234CC ,
 transactionTimestamp

: 2022-04-01T06:07:07.15"
}

10. receiveEvents webhook

4a. Response with HTTP 201 code,
{ transactionId : T-006-1234567890123-SUPP-20220401-1234CC ,
 sentTimestamp : 2022-04-01T06:07:08.35",
 message : DIP0000 - Ok }

9. Relay message to target

7. sendEvents API called

8. Initial validation successful;

Message on internal Q

Recipient

Internal Task

11. trigger Recipient validation

task

Figure 14 - Correlation Id example with IF-005 & IF-006

A worked example on this is as follows for IF-005 / 6:

1. For IF-005, a Metering Service Smart (MSS) or Metering Service Advanced (MSA) will send a message to the Registration Service, using the DIP (as defined in
DES-138).

2. As part of Level 1 validation, the DIP will respond synchronously back to the MSS or MSA (as described above with a Standard Response Body Type) and this will
contain the Correlation ID (DT-011). This will only be populated for a subset of messages as detailed in DES-138 (Correlation ID Created - Routing Rules section
for each interface). The MSS / MSA will need to store this “Correlation ID”.

3. The DIP will (also) add the Correlation ID to block D0 and send PUB-005 to the Registration Service with the added information (in the common blocks), as well as
the information in the original messages (in the common and custom blocks). The Registration Service (in this example) will also need to store this "Correlation
ID".

4. At this point in time, both the MSS / MSA and Registration Service will have / store this "Correlation ID".

© Elexon 2024 Page 70 of 76

5. At a future point in time, as per the process, the Registration Service will send a message, using IF-006.
6. For IF-006, the Registration Service will populate the S1 block with the sender Correlation ID (as this is a message that requires correlation). This is populated

from Step 3 above (the one the Registration Service stored from IF-005). This is shown in DES-138 as COPY in the routing rules.
7. The DIP will not change the data in the S1 block, it will pass this information through as per the design. The DIP will not populate the D0 block with a new

Correlation ID. This way we have 1 Correlation ID that is consistent across all related messages.
8. The DIP will send this message to the MSS / MSA (in this example) using the PUB-006 message and this will contain the Correlation ID. The MSS / MSA can look

this up in their systems against the Correlation ID stored previously (as described in Step 2 above) to continue processing as per the design.

© Elexon 2024 Page 72 of 76

6 Message Volume and Submission Patterns

One of the design principles of the TOM is, wherever possible, to balance the exchange of messages over the day.

The aim is to optimise message response times and to avoid overloading services with a bulk submission of messages

that would need to be processed in a short timeframe. The majority of messages flows will not have any exclusive

requirements in this area as the volumes are small and are not seen to be restrictive. However, some flows will require

monitoring and requirements for managing the message flows may be required, these are described below and in the

MHHS-DES001a - Functional Specification -Transaction Volumes - Appendix A v0.2 document

6.1 Half-Hourly Consumption Data (IF-021)

The Half-hourly consumption data message flow (IF-021) equates to over 90% of the TOMs messages in terms of

number and volume. In addition BP005 – Data Processing, the business process that uses this flow, has a gate closure

event (00:00 D+4) that could potentially mean services may push to submit their data in a short window just before the

gate closure and this needs to be avoided. The proposal is to recommend some “soft” targets so ensure that the Data

Services (both Smart and Advanced) submit the messages across the day in order to spread the load. The ideal

pattern would seem to be that batches of several thousand meter readings in a single API transaction would be

appropriate. The introduction of “soft” limits will hopefully encourage Data Services with larger portfolios to design their

submission patterns to spread the load as requested, if the “soft” limits are not adhered to, and extreme submission

patterns are exhibited, where for example a Data Service attempts to send all messages with the last 30 minutes

before gate closure, then “hard” limits will need to be imposed and the DIP will reject messages once the limit has been

reached. It is also recognised that scenarios may arise where the bulk submission of data is required, for example after

an upstream issue with the Meter Data Retrieval (MDR) service collecting metering data due to a network outage, in

order to meet the settlement deadlines.

The proposed “soft” limits for organisations with large portfolios will be, under normal operating conditions, i.e. where

either the DIP or the SDS is not returning from an outage, the maximum number of submissions each data service is

encouraged to submit in an hour is 1/6th of their portfolio size. Then to ensure not all messages are submitted within

the last six hours up to midnight, no more than ½ of their portfolio size can be submitted in a single 6 hour period.

Portfolio size will be measured by the number of distinct MPANs submitted over the IF-021 interface. A suggested

definition of large portfolio will be 1 million MPANs.

If Data Services do not want to design in a capability where submission are spread throughout the day, i.e. implement

soft limits, then a response to API throttling must be designed in, i.e. hard limits. Hard limits will be enforced by API

throttling at the DIP interface.

7 Message Auditing

All API activity will be logged for auditing and made available for audit reporting and message repudiation The DIP FS
does present some ideas at a high-level on how the audit reporting requirements can be met, and at this stage there is
no further detail than the ideas that were presented. These audit reports will be taken during the DIP design phase.

Auditing reports will enable participants to track messages for both individual messages exchanges and linked
workflow messages exchanges using the following criteria:

• Message Channel Id

• Transaction Id

• Workflow Correlation Id

• Date/time range

• MPAN

• Sender

• Receiver

© Elexon 2024 Page 73 of 76

8 Technical Architecture

8.1 Open API Design (Swagger)

The latest definitions are hosted here https://app.swaggerhub.com/apis/MHHSPROGRAMME3

8.2 Privacy & Security

Please see End-to-End Security Architecture document.

8.3 Performance

Performance criteria for all message/event channels are defined in the E2E Non-Functional Requirements

specification.

8.4 Connection Patterns

Standardised connection patterns will across all services with each message channel accessed via a pair of API
HTTP(s) (incoming) / webhook (outgoing) endpoints over mTLS.

Inbound API

There will be a single API endpoint for each message channel; the API will receive a multiple messages comprising a
standard header and a payload. Each transaction is signed within the HTTP header. Each connection will be able to
transmit a number of different messages during each connection (limits will need to be specified during the design
phase).

The endpoints are hosted:

https:/api.{environmment}.energydataintegrationplatform.co.uk/{version}/dip-

channel/{IF-xxx}

{environment} will be one of the following : prod; preprod; sit; uit

{version} current API version environment specific, at present 1.1

Each connection will result in a HTTP return code that will indicate the success or otherwise of the complete
transaction.

The response body of the HTTP call will deliver the Sender a transaction ID, and optionally a correlation ID, against the
Sender's Unique Reference for each message.

Each party will be able to make multiple simultaneous connections with the endpoint.

Outbound Webhook

There will be a single endpoint for each publication channel. The expectation is that each receiving Participant will be
served from multiple outgoing message/event queues, and messages will be queued in the order received (however
FIFO is not guaranteed). The response body of the HTTP call will record the transaction ID against the success/failure
of the call.

If required, participants will be able to register the same webhook subscription for each publication endpoint, or
alternatively they can register different subscriptions logically on each Publication Id.

The requirement will be to have standardised connection patterns across all services. All services will be expected to
present as minimum API (inbound)/webhook (outbound) HTTP interfaces with signed JSON payload and encrypted in
transit with mTLS. This is the minimum requirement for all services and should not rule out the possibility of having
other connections on specific services where considered appropriate, for example, the use of proprietary cloud

3 Whilst the APIs are being designed the API server and base URL defined in the API swagger definitions are only interim
values. Once the final hosting arrangements for the DIP are known then these will change to the final correct values.

© Elexon 2024 Page 74 of 76

connectors should be considered for the high-volume interfaces, i.e., half-hourly consumption data if the DIP and the
source systems are located within the same cloud platform.

© Elexon 2024 Page 75 of 76

8.5 Version Control

Versioning is a crucial part of API design. It gives developers the ability to improve their API without breaking the

client’s applications when new updates are rolled out.

Due to the complexity of the data exchange between Market Participants and the DIP being mostly in the format of the

messages where minor versioning is required, the proposal is for API versioning through custom headers. However,

entity versioning, where there are major changes to the API then versioning through URI path would be more suitable.

As a principle, all API definitions need to be backwardly compatible. In the situation where this does not hold, then a

significant transition period must be provided for participants to move from old to new version.

 API Versioning

API version control must adopt semantic versioning as the common standard, i.e.:

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards compatible manner, and

3. PATCH version when you make backwards compatible bug fixes.

Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH format.

 Message Channel Versioning

Each separate message channel has its own version number and is defined by the schemaVersion item in the

payload/CommonBlock/S0, for example:

[
 {
 "payload": {
 "CommonBlock": {
 "S0": {
 "interfaceId": "IF-001",
 "schemaVersion": "004",
 "eventCode": "[InitialRegistration]"
 },

Messages will only be submitted in a single version of the message. If a message channel requires an upgrade then

this will happen via a controlled outage where all message ingress/egress is quiesced, the channel is then modified

and then the API will only accept messages in the new format. Subsequently, if messages are submitted that align to

the previous schema version then they will be rejected with a schema validation error.

At present Swagger only supports a single version for each interface. When the DIP moves into an operational phase

then the swagger definitions will meet the requirements to support single version on message ingress into the DIP, and

multiversion on message egress from the DIP.

Please see section 4.9 on message replay.

 Versioning Examples

• Major version

A new major version of the API will be created when a new piece of functionality is required, or a change is required
that will completely break the existing API. Under this scenario all interaces will only have forwards looking data
definitions and not support previous versions of data.

© Elexon 2024 Page 76 of 76

Replay facilities would support both old & new data definitions (see below).

• Minor version

Where a new message channel is created, then a new minor version of the API will be created. This will not require a

new API to be created, however, all the corresponding interface and publications data definitions will be need to be

updated to accommodate the new channel.

Replay facilities would support both old & new data definitions (see below).

• Patch version

Where the data definition of a single interface changes, then that will necessitate a patch version of the current version

of the interface. Under ‘normal’ circumstances the incoming interfaces will only support the new version of the data

definitions. If there is a requirement to support multiple version of the same interfaces (incoming) then a new minor

version is required. In this scenario the publication of the messages will also support just the new current version. All

data must have already traversed through the DIP.

Replay facilities would support both old & new data definitions (see below).

8.5.3.1 Replay Facilities

There is a requirement for the DIP message archive to be available to accommodate message replay by Market

Participants. Where a message channel has been versioned to accommodate a change the message structure, the

message replay will need to support all versions of the message. The schemaVersion in the message header informs.

If a participant requests a message reply, it is their responsibility to ensure that all pertinent versions of the message

will be accepted.

 Multi-version support

There is a requirement for multi-version support of APIs. All new major, minor and patch versions, i.e. x+1, or Y+1, or

Z+1, will be available prior to release for industry testing and potential re-qualification for major releases on a non-

production environment.

It is difficult to view the type of changes that would be included in a major release, hence any statement on backward

compatibility is difficult to make, however, where possible then backward API compatibility should be maintained for a

short period after the roll out of a new major version.

For minor releases multi-version support will be dependent on the type of underlying change. It is expected that most

will be data changes and new message channels.

